
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Real-Time Halftoning:
A Primitive For Non-Photorealistic Shading

Bert Freudenberg, Maic Masuch, and Thomas Strothotte

Institut für Simulation und Graphik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

Abstract
We introduce halftoning as a general primitive for real-time non-photorealistic shading. It is capable of producing
a variety of rendering styles, ranging from engraving with lighting-dependent line width to pen-and-ink style
drawings using prioritized stroke textures. Since monitor resolution is limited we employ a smooth threshold
function that provides stroke antialiasing.
By applying the halftone screen in texture space and evaluating the threshold function for each pixel we can influ-
ence the shading on a pixel-by-pixel basis. This enables many effects to be used, including indication mapping and
individual stroke lighting. Our real-time halftoning method is a drop-in replacement for conventional multitextur-
ing and runs on commodity hardware. Thus, it is easy to integrate in existing applications, as we demonstrate with
an artistically rendered level in a game engine.

1. Introduction

A number of recent works on halftoning and artistic screen-
ing has demonstrated that a wide range of styles can be
achieved with these methods. Yet, the underlying idea of
halftoning, thresholding against a halftone screen, is very
simple. We propose a function that implements halftoning
in the texture blending hardware. This provides a new, flex-
ible primitive for a variety of non-photorealistic rendering
styles that still run at full texturing speed of the hardware.

The particular contribution of this work is

• a real-time halftoning method for non-photorealistic shad-
ing that also antialiases the halftoned image (§3),

• a scheme that allows to store multiple texture layers of in-
creasing darkness in a single texture and extract a number
of these layers according to a target tone on a per-pixel
basis (§4),

• an approach for fast non-photorealistic shading effects,
in particular indication mapping and lighting-dependent
strokes (§5),

• a simple implementation of the above that runs on com-
modity graphics hardware and is easy to integrate in ex-
isting applications, thereby creating a simple to use non-
photorealistic shading method (§6).

2. Related Work

Since we aim at real-time rendering of non-trivial scenes,
drawing each shading stroke separately is too expensive (see
Figure 6 which consists of millions of individual strokes).
We have to use the existing texturing hardware. Both Lake
et al. and Praun et al. have explored a similar direction1, 2,
which is to store multiple layers of strokes in textures
and choosing at run-time which of these to display. While
Lake can control the shading per polygon (i.e., flat shad-
ing), Praun’s approach provides control at vertex level (i.e.,
gouraud shading). Both methods do not support per-pixel
shading effects, like darkening parts of polygons with sur-
face textures.

Recently, Durand et al. demonstrated an interactive draw-
ing system3 that implements a smooth threshold function
via SGI’s pixel-textures. It is not designed for rendering 3D
scenes but draws strokes individually under user control ac-
cording to a reference image.

Shading by halftoning has a long tradition in off-line render-
ing, like the digital engravings and copper plates of Leister4

or recent work like Ostromoukhov’s engravings5 and Very-
ovka and Buchanan’s6 halftoning works. These methods are
great references for possible styles.

Similar effects can be achieved by procedural texturing as

c© The Eurographics Association 2002.



Freudenberg, Masuch, and Strothotte / Real-Time Halftoning

described by Johnston7. However, while real-time shading
languages are an active research topic8, these shaders are still
too expensive on common hardware.

3. Halftoning With Texturing Hardware

For our real-time halftoning process we employ the config-
urable texture blending hardware that is nowadays standard
even in commodity hardware, like NVIDIA’s GeForce, ATI’s
Radeon, etc.9, 10 The basic idea of halftoning is to apply a
threshold function per pixel to a target intensity, where the
threshold value is stored in the halftone screen. In conven-
tional halftoning, this threshold function is binary: If the tar-
get intensity is below the threshold, a black pixel is gener-
ated, otherwise a white pixel. We show how this function can
be computed in hardware first, before presenting a threshold
function that is more apt for interactive application.

3.1. Binary Threshold Scheme

We store the halftone screen as a texture tex. The target
intensity can be determined in several ways. We assume
using the interpolated vertex color col for now (see Sec-
tion 5 for more sophisticated variants). The blending hard-
ware provides a mux() function that selects between two
colors based on a third:

mux(a,b,c): (a <= 0.5) ? b : c

so we can use an implementation like

tmp = add(tex, col - 0.5);
out = mux(tmp, 0, 1);

An example image rendered using this approach is shown in
Figure 1(c).

This works indeed well and fast, but has two drawbacks:
It only generates black and white pixels, and it uses up
two blending stages, which is what the majority of installed
graphics hardware provides. The strict use of only black
and white pixels leads to very disturbing aliasing of edges
and popping pixels when the lighting changes. There is no
smooth transition from black to white, as this would re-
quire gray values which are explicitly prohibited in the bi-
nary threshold scheme.

(a) (b) (c) (d)

Figure 1: Halftoning samples. (a) halftone screen, (b) target
intensity, (c) binary threshold, (d) smooth threshold

3.2. Smooth Threshold Scheme

To overcome the deficiencies described in section 3.1 we in-
troduce a smooth threshold scheme. It is designed to pre-
serve to a certain degree the gray levels found in the halfton-
ing screen. Strictly speaking, this is not half-toning anymore,
but since the majority of pixels will be black or white, we
will stay with that term. While the binary threshold function
has infinite slope at the threshold value, the smooth thresh-
old function uses a constant slope that creates a less rapid
transition from white to black.

To implement the smooth threshold function we use the fol-
lowing blending configuration:

tmp = add(1 - tex, -col) * C;
out = 1 - tmp;

This adds the target intensity col to the halftone screen
tex, inverts it, and scales the result by C (we found the
value 4 useful for the kind of halftone screens we used) be-
fore inverting again. The double inversion (1-(tex+col)
and 1-tmp) is necessary because the scaling shifts gray val-
ues towards white, while we want to scale towards black (see
Figure 2). The result is clamped by the hardware to the 0–1
range. Applying this function instead of a binary threshold
results in an antialiased image, as illustrated in Figure 1(d).

An additional advantage of this scheme compared to the
binary scheme is that on NVIDIA’s register combiner ar-
chitecture only one general combiner is needed because
the final inversion can be executed in the “final” combiner.
This leaves one general combiner free to use even on older
GeForce class hardware.

tex

col

tmp

1-(tex+col)

* 4; 1 - tmp;

tex>col ?

0 : 1

out

(a) (b)

Figure 2: Halftoning schemes. (a) binary threshold, (b)
smooth threshold. Inputs and outputs are shown as both,
function plots and actual gray values.

4. Creating Halftone Screens

To present shading by halftoning, the ratio of black to white
pixels has to be varied based on the lighting conditions.
Artistically, there are two major directions in which this is
done: By varying the line width while maintaining a roughly
constant stroke density, as in engravings and woodcuts, or by

c© The Eurographics Association 2002.



Freudenberg, Masuch, and Strothotte / Real-Time Halftoning

adding strokes of constant line width which results in vary-
ing density, as in pen-and-ink style hatching. We show how
to construct halftone screens for these styles now.

4.1. Engraving

For engravings we can build on a variety of previous work
like Ostromoukov’s5 or Veryovka’s6 work. Their dither
screens can be directly employed in our real-time system.
Precondition for our texture-based approach is a suitable sur-
face parameterization. Usually, the dither screens are two-
dimensional, but for the special case of a single set of par-
allel engraving lines a one-dimensional texture encoding a
gray ramp, like the one shown in Figure 2, is sufficient. Fig-
ure 5 was rendered using this texture.

4.2. Stroke Textures

Inspired by Winkenbach and Salesin’s work11 we created a
method to construct halftone screens that can render priori-
tized stroke textures in real-time.

The input to the halftone screen encoding process is a set
of independent stroke layers. These are drawn in a paint-
ing package using black ink and antialiased strokes on a
transparent background. Each layer will be encoded as gray
level: The first layer remains unscaled (ranging from black
to white), each successive layer is compressed to range from
a lighter gray value to white. Then the layers are drawn into
the halftone screen, starting with the last and lightest layer to
the first, darkest layer. The process is demonstrated in Fig-
ure 3.

(a) (b) (c) (d)

Figure 3: Stroke map encoding. (a) darkest layer, (b) lighter
layer, (c) lightest layer, (d) stroke map

This encoding scheme for the halftoning screen has the nice
property that it is intuitive to the texture artist how a stroke
map will be rendered. When shading a surface, the layers
will get drawn in order of decreasing darkness. That is, in
very light regions only the most dark lines are visible, while
in darker regions, additional layers (encoded with lighter val-
ues) will appear. While this may sound contrary, it should
become obvious by examining Figure 4.

The encoding process could as well be used to compress
automatically generated hatching strokes2, but we aimed at
using stroke textures to depict and distinguish materials. A
viable alternative might be to automatically extract the lay-
ers from real-world textures12. Our method also works well

(a) (b) (c)

Figure 4: Stroke map decoding. (a) stroke map, (b) target
intensity, (c) shaded image

with mipmapping to control stroke appearance depending on
distance13, 2.

5. Special Effects

Since the basic real-time hatching technique does not use up
all texturing hardware resources (in fact, only one portion of
one combiner and one channel of a texture), there’s head-
room for adding a range of special effects. In a very similar
way to photorealistic rendering, all effects that use textures
could be employed.

The effects are generally executed in the earlier texture
stages, the last stage must be spared for applying the thresh-
old function. Essentially, the intensity value col used in
Section 3 is replaced by a computed value. We only present
two techniques particularly related to NPR here: texture in-
dication and stroke lighting.

5.1. Indication Mapping

Texture indication is the technique of gradually fading out
detail in areas of less visual importance. It was introduced
to computer-generated line drawings by Winkenbach11 and
it adds greatly to the non-technical look of these kind of ren-
derings.

Our system implements texture indication by storing a low
resolution indication map along with the model. A signed
value is stored in this map: zero does not change the default
lighting, while positive or negative values lighten or darken
the rendering. The result of this technique can be seen in
Figure 7.

5.2. Individual Stroke Lighting

We use per-pixel arithmetic to evaluate the threshold func-
tion, so we also can evaluate the lighting at each pixel. We
assign a normal to each pixel in a stroke by supplying a nor-
mal map suitable for dot-product bump mapping. This al-
lows a single stroke to change it’s width depending on the
light direction, a technique widely employed in traditional
drawing. This effect is used on the brick outlines in Figure 7:
The light comes from the upper right, so only the lower and
left outline strokes are drawn.

c© The Eurographics Association 2002.



Freudenberg, Masuch, and Strothotte / Real-Time Halftoning

On hardware with two texture combiners we only can do
either indication mapping or stroke lighting but not both;
combining the bump mapping result with the indication map
would require an additional stage. Thus, the full-featured
model of Figure 7 can only be viewed on GeForce3 or equiv-
alent hardware.

6. Application

To test our real-time halftoning technique, we modified a
level for the Shark3D game engine14 by replacing textures
and tuning the lighting. We didn’t even touch the engine
source code: all that was needed was to write a new custom
shader. This proves the rapid applicability of the method. At
a resolution of 1600x1200 pixels running on a notebook with
1.2 GHz Pentium III and a GeForce2Go graphics accelera-
tor this runs with more than 20 frames per second. In fact,
the application is CPU limited since the dynamic lightmaps
are updated in software. A snapshot from the game level is
shown in Figure 6.

7. Conclusions

We have introduced halftoning as a flexible shading primi-
tive for real-time non-photorealistic rendering. We demon-
strated how to adapt traditional halftoning for the limited
screen resolution with a smooth threshold function, and ex-
plored several styles and effects enabled by this method, es-
pecially a real-time implementation of stroke textures.

There remain some problems, still. The most visible artifact
is the insufficient separation of overlapping strokes. Also,
the effects are limited by the number of available combiners,
because our technique does not lend itself easily to multi-
pass rendering. Also, we have neglected outlines so far, we
hope to find similarly flexible methods for drawing edges,
soon.

The strongest aspect of our shading method is that it is very
easy to use in applications, and only requires commodity
hardware to run. We hope to see more non-standard render-
ing styles employed in various applications, but especially
computer games, in the future.

References

1. Adam Lake, Carl Marshall, Mark Harris, and Marc
Blackstein. Stylized rendering techniques for scalable
real-time 3D animation. In Proceedings NPAR 2000,
pages 13–20, 2000. 1

2. Emil Praun, Hugues Hoppe, Matthew Webb, and Adam
Finkelstein. Real-time hatching. Proceedings of SIG-
GRAPH 2001, pages 579–584, August 2001. 1, 3

3. Fredo Durand, Victor Ostromoukhov, Mathieu Miller,
Francois Duranleau, and Julie Dorsey. Decoupling

strokes and high-level attributes for interactive tradi-
tional drawing. In 12th Eurographics Workshop on
Rendering, 2001. 1

4. W. Leister. Computer generated copper plates. In Com-
puter Graphics Forum, volume 13, pages 69–77, Jan-
uary 1994. 1

5. Victor Ostromoukhov. Digital facial engraving. In
Proceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, pages 417–
424, Los Angeles, California, August 1999. ACM SIG-
GRAPH / Addison Wesley Longman. 1, 3

6. Oleg Veryovka and John Buchanan. Comprehensive
halftoning of 3D scenes. In Proceedings of Eurograph-
ics 99, Computer Graphics Forum, pages C/13–C/22,
1999. 1, 3

7. Scott F. Johnston. Mock media. In Advanced Render-
Man: Beyond the Companion, SIGGRAPH 98 Course
Notes #11, pages 113–121, 1998. 2

8. Kekoa Proudfoot, William R. Mark, Svetoslav
Tzvetkov, and Pat Hanrahan. A real-time procedural
shading system for programmable graphics hardware.
In Proc. SIGGRAPH 01, Computer Graphics Proceed-
ings, Annual Conference Series, pages 159–170, 2001.
2

9. Evan Hart and Jason L. Mitchell. Hardware Shading
with EXT_vertex_shader and ATI_fragment_shader.
http://www.ati.com/developer/ATIHardwareShading.pdf. 2

10. John Spitzer. Programmable Texture Blending. NVIDIA.
http://developer.nvidia.com/view.asp?IO=programmable_texture_blending. 2

11. Georges Winkenbach and David Salesin. Computer-generated
pen-and-ink illustration. In Proc. SIGGRAPH 94, Computer
Graphics Proceedings, Annual Conference Series, pages 91–
100. ACM Press, July 1994. 3, 6

12. Oleg Veryovka and John Buchanan. Texture-based dither ma-
trices. Computer Graphics Forum, 19(1):51–64, 2000. 3

13. Bert Freudenberg, Maic Masuch, and Thomas Strothotte.
Walk-Through Illustrations: Frame-Coherent Pen-and-Ink
Style in a Game Engine. Computer Graphics Forum: Pro-
ceedings Eurographics 2001, 20(3):184–191, 2001. 3

14. Spinor GmbH. Shark3d. http://www.shark3d.de/. 4

Acknowledgments

The authors which to thank Folker Schamel for the sup-
port in using the Shark3D engine, and our students Bert
Vehmeier, Ragnar Bade, Christian Mantei, Birger Schmidt,
and Niklas Röber for modeling, texturing, and preparing im-
ages for this paper.

c© The Eurographics Association 2002.



Freudenberg, Masuch, and Strothotte / Real-Time Halftoning

Figure 5: Engraving-style rendering of the Utah Teapot

Figure 6: Screen shot from a level in a game engine

c© The Eurographics Association 2002.



Freudenberg, Masuch, and Strothotte / Real-Time Halftoning

Figure 7: Pen-and-ink style rendering featuring stroke maps, indication mapping and individual stroke lighting (modeled after
Winkenbach’s house11)

Figure 8: Some stroke maps, normal maps, and indication maps used in Figure 7

c© The Eurographics Association 2002.


