
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201   t: (818) 332-3001  f: (818) 244-9761 

 

 

 
 
 
 
 
 
 
 

KScript and KSWorld: A Time-Aware and
Mostly Declarative Language and Interactive
GUI Framework 
 
Yoshiki Ohshima, Aran Lunzer, Bert Freudenberg,
Ted Kaehler 
 
 
 
 
 
 
 
 
 
 
 
VPRI Technical Report TR-2013-002 

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

Miguel tl3
Text Box
This paper will be presented at and will appear in the ACM Proceedings of the "Onward! 2013" Conference held in Indianapolis, IN, October, 2013

Miguel tl3
Typewritten Text



KScript and KSWorld:
A Time-Aware and Mostly Declarative Language

and Interactive GUI Framework

Yoshiki Ohshima Aran Lunzer Bert Freudenberg Ted Kaehler
Viewpoints Research Institute

yoshiki@vpri.org, aran@acm.org, bert@freudenbergs.de, ted@vpri.org

Abstract
We report on a language called KScript and a GUI frame-
work called KSWorld. The goal of KScript and KSWorld is
to try to reduce the accidental complexity in GUI framework
code and application building. We aim for an understand-
able, concise way to specify an application’s behavior and
appearance, minimizing extra details that arise only because
of the medium being used.

KScript is a dynamic language based on the declara-
tive and time-aware dataflow-style execution model of Func-
tional Reactive Programming (FRP), extended with support
for loose coupling among program elements and a high de-
gree of program reconfigurability.

KSWorld is built using KScript. The fields, or slots, of
graphical widgets in KSWorld are reactive variables. Defi-
nitions of such variables can be added or modified in a lo-
calized manner, allowing on-the-fly customization of the vi-
sual and behavioral aspects of widgets and entire applica-
tions. Thus the KSWorld environment supports exploratory
application building: a user constructs the appearance inter-
actively with direct manipulation, then attaches and refines
reactive variable definitions to achieve the desired overall be-
havior.

We illustrate our use of KSWorld to build an editor for
general graphical documents, including dynamic documents
that serve as active essays. The graphical building blocks for
documents are the same as those used for building the editor
itself, enabling a bootstrapping process in which the earliest
working version of the editor can be used to create further
components for its own interface.

[Copyright notice will appear here once ’preprint’ option is removed.]

Figure 1. The Frank Document Editor.

As one way of measuring progress on our complexity
goal, we provide an overview of the number of lines of code
in KSWorld. The total for the KScript compiler, the FRP
evaluator, the framework, document model and document
editor is currently around 10,000 lines.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Frameworks

Keywords Data-flow language; Exploratory Programming
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1. Introduction
The software for today’s personal computing environments
has become so complex that no single person can understand
an entire system: a typical desktop OS and commonly used
application suite amount to over 100 million lines of code.
Our group’s early experiences with personal computing led
us to understand that much of this complexity is “acciden-
tal”, rather than inherent. In the STEPS project we therefore
explored how to reduce such accidental complexity in soft-
ware, setting as our domain of interest the entire personal
computing environment [1].

In this paper we focus on the end-user authoring envi-
ronment. We feel that end-users should be able to make ap-
plications of the same kind as those they are using. Toward
this goal, the environment they use should not be just an ap-
plication suite like Microsoft Office, but also an authoring
environment like HyperCard or Etoys [2].

From HyperCard we can borrow the simple “stack of
cards” document model. To move beyond HyperCard, how-
ever, we would like to dissolve the barrier between system-
defined and user-defined widgets, making everything uni-
form. We would also like to be able to embed one object into
another without limitation, to construct larger documents.
Meanwhile from Etoys we can borrow direct-manipulation
authoring, but wish to go beyond Etoys by having a better
execution model, especially a better model of time, and mak-
ing it easy to export and import parts of a project.

We decided to base our approach on interactive con-
struction of applications, and reactive programming. Anal-
ogously, the way reactive programming works is similar
to spreadsheets: a variable is defined using a formula that
refers to other variables, and when any of the input variables
(sources) changes, the variable that depends on them (the
dependent) is updated. The dependency relationship is tran-
sitive, so updates cascade through the dependency network,
which can be seen as a dataflow graph. This matches well
the nature of a graphical user interface (GUI), where a large
part of the code reacts to changes in objects and time-based
events. We feel that the declarative nature of reactive pro-
gramming makes such code cleaner.

In our current implementation we follow the formulation
of Functional Reactive Programming (FRP) [3] for the dis-
tinction between continuous and discrete variables, and use
combinator names derived from Flapjax [4].

Note that we cannot sacrifice the interactive and ex-
ploratory nature of systems like HyperCard and Etoys. Our
approach came down to finding a good balance between
declarative programming and having the environment be dy-
namic. We achieved this by incorporating the idea of loose
coupling into the core of the system. The variables used in
the definition of a dataflow node are not resolved at the time
of definition. Rather, the references are late-bound and are
re-resolved at every evaluation cycle to detect changes. Thus
objects in the system are always loosely coupled. Removing

or adding variables, making a forward reference to an object
that has not yet been defined, and serializing node definitions
all become straightforward.

In summary, KScript and KSWorld have the following
characteristics:

Dictionary-like objects The base language of KScript re-
sembles JavaScript, but with cleaner syntax and seman-
tics. KScript provides simple object-oriented language
features such as methods and fields in objects. An ob-
ject in KScript is a variable-length dictionary, which sup-
ports adding new actions or fields on the fly to support
exploratory programming.

FRP-style dataflow programming The base language is
extended to support FRP-style dataflow programming.
Each dependency description creates a reactive object
called an event stream, or more simply a stream. The
fields of an object are streams, and all participate in the
dependency graph of the running system.

Reified Streams A stream is not only a node in the depen-
dency graph, but also acts as a reified variable with useful
capabilities. For example, there is a language construct to
obtain the previous value of the stream (essentially this is
the same as pre in Lucid [5], or earlier in Forms/3 [6]).
Our stream variables also allow setting a new value for
the stream from an interactive programming tool.

Late-bound variable resolution When a formula is defined
for a stream, variable names that refer to dependency
sources are recorded as keys for looking up the actual
streams. Only when the stream is being checked for pos-
sible updates are the dependencies resolved, using the ob-
ject that owns the stream as a namespace. This is the basis
of the system’s loose coupling between entities.

GUI framework We wrote a GUI framework called KSWorld
that takes full advantage of the flexibility and dynamic
nature of KScript. Graphical objects in KSWorld are
KScript objects, and the user can modify the definitions
of fields to construct applications.

Universal Document Editor On top of the GUI framework
we built a universal document editor (called Frank) that
eanbles the construction of documents and dynamic ap-
plications. Frank appears in Figure 1.

The rest of this paper is organized as follows. In Section 2
we explain the basic language features of KScript, then in
Section 3 discuss how we have addressed some familiar
limitations of the FRP model. Section 4 is an overview of
the KSWorld framework, followed in Sections 5 and 6 by
examples of building widgets and tool parts of increasing
sophistication. In Section 7 we show how these small parts
are put together to make an end-user authoring application,
followed in Section 8 by examples of dynamic contents built
using that application. Section 9 shows a breakdown of the
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lines of code in the system as it stands, to give a rough sense
of its complexity. Related work is discussed in Section 10.

2. KScript Language
This section describes the KScript language. KScript is a
general-purpose language with features suitable for writing
graphical applications. It can be considered a hybrid of a
simple object-oriented language and reactive programming
extensions.

2.1 Base language
The base object in KScript, called KSObject, is a simple
dictionary that stores values under keys. A KSObject can
understand a basic set of methods, and can inherit more
methods from its parent.

The surface syntax resembles CoffeeScript [7]. In our
search for a clean syntax we decided to try using the “off-
side rule”, in which level of indentation is used to define the
nesting of code blocks. CoffeeScript inherits some problems
from its ancestor (JavaScript), such as the fiddly distinction
between arrow -> and fat arrow => in defining a function, in-
dicating alternative ways to bind the this pseudo-variable.
We simplified the language and eliminated such issues.

Unlike some languages that require a syntactic marker
(such as @ in Ruby) to distinguish temporary variables from
objects’ instance variables (fields), for KScript we wanted
to favor a cleaner appearance. Both temporary variables and
the fields of the receiver are referred to just by specifying
a name. To distinguish the two, we require all temporary
variables to be declared explicitly with var.

We use := for the “common case” assignment operator
(the special case is described below). Here is a simple piece
of code:

aFunction := (a) ->

var c := a + b

return c

An anonymous function with a single argument called a

is created by the () -> syntax and bound to the variable
aFunction. In the body of the function, b is a reference to a
field in this (the object in which this definition is executed),
c is a temporary variable that is being assigned to, and the
value of c is returned.

This syntax, where the temporary variables and fields
are not distinguished syntactically, makes the compilation
of code context dependent. That is, the meaning of a line
of code can be different depending on the existence of lo-
cal bindings. However, although it is possible to refer to a
variable that is defined as an argument or temporary in a
containing scope, in our experience the need for such “free”
variables is rare: it is always possible to create a field in the
receiver to hold the needed value. A further reason to avoid
using free variables in definitions is that they cause problems
in serialization and deserialization.

2.2 FRP-style dataflow extension
On top of the base language we added an FRP-style dataflow
extension. As a dataflow definition is always stored into a
field, it takes the following form:

fieldName <- expression

The left hand side of the special assignment operator <- is a
field name, and the right hand side is a dataflow definition.
When such a line is encountered in executing a KScript
program, or evaluated in the Inspector, the right hand side
is evaluated to a kind of delayed object called a stream, and
is assigned into the specified field of this. For example,
the code snippet below uses a function called timerE() to
create a stream that updates itself with a new value every
200 milliseconds, and this stream is assigned to a field called
myTimer:

myTimer <- timerE(200)

Initially the stream created by timerE(200) has no value
(strictly, it has undefined as its value), and each 200 “log-
ical” milliseconds it acquires a new value corresponding to
the logical time of the system.

The stream can be used by other streams:

fractionalPart <- myTimer % 1000

sound <- FMSound.pitch_dur_loudness(fractionalPart,

0.2, 100)

player <- sound.play()

The operator % calculates the remainder, so the value in the
fractionalPart stream is the milliseconds part of the
myTimer stream (i.e., a sequence [..., 0, 200, 400,

600, 800, 0, 200, ..., 800, 0, ...]. This value
is used by the sound stream to create an FMSound object
with the specified pitch, 0.2 seconds duration, and 100 for
loudness. The stream expression sound.play() defines a
stream that depends on the sound stream, and the resulting
stream is bound to the player field. When a new value ar-
rives on the sound stream, the expression is evaluated with
that new value. In this case, the play() method of the sound
value is invoked so the result of running this program is a
stair-like tune played by the speaker. Note that the method
play() is “lifted” in the same way that the arithmetic oper-
ation % is lifted: The operations are applied to the values in
the streams, rather than the streams themselves.

The expression on the right of a <- assignment has a
similar meaning to those quoted with {!...!} in Flapjax.
When the compiler reads the expression, it treats the vari-
able references as dependency sources (such as myTimer in
fractionalPart, and fractionalPart in sound). This
means that when a source changes, the expression will be
evaluated to compute a new value for the stream.

An important point is that such variable references are
loosely coupled. That is, the actual stream to be bound to the
variable is looked up in the owning KSObject each time the
referenced sources are checked for updates.

3 2013/9/30
VPRI Technical Report TR-2013-002



This scheme has some clear benefits. The order of the
stream definitions in a chunk of code does not affect the
program behavior (as in Compel, a single assignment lan-
guage [8]); changing the dependency graph requires no ex-
tra bookkeeping effort; and garbage collection works with-
out needing to unregister dependents from their sources, or
to detect finished streams.

There is a way to filter changes and stop them from
propagating downstream, using the value undefined. In
KScript’s dataflow model, when the value computed for a
stream is undefined the system treats it not as a new value
for the stream but as a signal for not propagating changes
further. For example, the stream stopper below does not
update beyond 1,000, and the value in timerViewer stream
does not exceed 10 (1,000 divided by 100):

stopper <- if myTimer > 1000 then undefined else myTimer

timerViewer <- stopper / 100

2.3 Behaviors and events
In FRP, there is a distinction between “behaviors”, which
represent continuous values over time, and “events”, which
represent sequences of discrete values.

Under the pull-based, or sampling-based evaluation scheme
that KScript operates (explained in Section 2.5), a behavior
can easily be converted to events and vice versa, as a behav-
ior is like a stream of events but the value of the last event
is cached to be used as the current value; an event is like
a behavior but each change in the current value is recorded
as an event. This is a similar observation to the “Reactive”
values described in [9].

However, as the original FRP model formalized, mixing
behaviors and events in an expression leads to semantic
problems, especially when a program is being loaded or
initialized. For example, whether to reinstate the value of a
stream upon deserializing is dictated by whether the stream
is a behavior or not (we discuss this in more detail in [10]).

In KScript, a behavior is defined with an initial value
and an expression that produces the values that follow. The
initial value is given either with the keyword fby (meaning
“followed by”, and borrowed from Lucid), or the function
startsWith() (borrowed from Flapjax). For example, a
stream of Point values starting from (0, 0) and moving to
the positive x-direction over time can be expressed as:

aPoint <- P(0, 0) fby P(timerE(100) / 10, 0)

where the constructor P creates a Point object.
A stream that has no stream references in its definition

is called a value stream. To create a value stream that acts
as a behavior, the function streamOf() is used. It takes
one argument and creates a constant stream with that argu-
ment as the value. To create a value stream that acts as an
event (thus not having an initial value), the 0-ary function
eventStream() is used.

2.4 Combinators
In addition to the basic expressions used in the examples
above, KScript offers several combinators that combine
other streams to make a sub-graph in a dependency network.
The combinators’ names and functionality are drawn from
FRP implementations, especially Flapjax.

2.4.1 Expressions and “when” constructs
As described above, when a stream reference appears in
the definition of another stream, the compiler marks it as
a source. Below, color is a source for the stream bound to
fillUpdater:
fillUpdater <- this.fill(color)

When the dependency specification is more complex, or
it would be convenient to bind the value of the trigger to
a temporary variable, one can use the when-then form to
specify the trigger and response:
fillUpdater <- when

Color.gray(timerE(100) % 100 / 100) :c

then

this.fill(c)

The timerE triggers the gray method of Color. The result-
ing color value is bound to a temporary variable c and used
in the then clause, which will be evaluated and becomes the
new value of the stream. As is the case here, it is sometimes
true that the side effects caused by the then clause are more
interesting than the actual value.

Internally, the when form is syntactic sugar for the more
traditional combinator mapE, and an argument-less variation
of it called doE. The following two lines are equivalent:
beeper <- when mouseDown then this.beep()

beeper <- mouseDown.doE(() -> this.beep())

2.4.2 mergeE

The mergeE combinator takes multiple stream expressions
as its arguments, and updates itself whenever the value of
any of those expressions changes.

The value of the mergeE is the value of the expression
that most recently changed. However, again it is sometimes
the case that the actual value of mergeE is not used in the
triggered computation; what is important is just the fact that
something is to be updated. For example, imagine you have
a line segment object (called a Connector) in an interactive
sketch application, and it has to update its graphical appear-
ance in response to movement of either of its end points
(bound to start and end), or to a change in the width or
fill of its line style. We watch for any of these changes with
a single mergeE, then invoke a method with side-effects
(updateConnector()) to recompute the graphical appear-
ance:
updateLine <-

when

mergeE(

start.transformation,
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end.transformation,

fill,

width)

then

this.updateConnector()

One might think that the updateConnector() method
could be registered as some kind of callback for these four
fields. However there is an advantage to using mergeE; the
merged stream represents the clear “policy” that specifies
what constitutes the condition to trigger updateConnector(),
and updateConnector() has to be mentioned only once in
the program.

2.4.3 Field accesses
Fields can contain other objects that in turn contain streams,
and it is common that a program needs to combine the
streams from different objects. The mergeE example above
includes such accesses, to the transformation streams within
the start and end objects. A dot notation for a accessing
field, such as:
start.transformation

can be used in the stream definition of another stream as a
source stream.

In Sections 4.7 and 7.2, two special “virtual fields” to
refer to the top level window object and the document editor
handler object are introduced. It is often useful to write a
stream definition that involves streams that are fields of the
top level window. Having a virtual field allows easy access
to them.

2.4.4 anyE

In GUI programming, there is often a need to watch a collec-
tion of homogeneous objects and detect when any of those
objects changes. For example, a menu can be defined as a
collection of buttons that reacts when the fire stream of
any of the buttons is updated due to a click from the user.
The anyE combinator takes as arguments a collection of ob-
jects and the name of the stream to watch. For example:
items := col // a collection of buttons

fire <- anyE(items, "fire")

The items field is holding the button collection. The anyE

stream looks for a new value in the fire stream of any item,
and updates itself with that value.

2.4.5 timerE

This was already used in Section 2.2. It takes a numeric
argument (in fact it could be a stream expression, but we
have not yet found a use case for this) and creates a stream
that updates itself after each passing of the specified number
of milliseconds.

2.4.6 delayE

delayE delays the propagation of events for a specified
length of time. The syntax of delayE looks like a mes-
sage send. It takes a numeric argument, and delays upstream

Evaluator.addStreamsFrom = (anObject) ->

for stream in anObject

// add stream to the list of streams called streams

Evaluator.sortAndEvaluateAt = (logicalTime) ->

var sorted = this.topologicallySortedStreams()

for stream in sorted

stream.updateIfNecessary(logicalTime)

Figure 2. The evaluation method of KSObject in pseudo-
code

events by the specified number of milliseconds before prop-
agating them. For example, compare these two stream defi-
nitions:

beeper <- buttonDown.doE(() -> this.beep())

beeper <- buttonDown.delayE(500).doE(() -> this.beep())

In effect, the first definition of beeper creates a pipeline that
has two nodes (buttonDown and doE), and that makes a
beep noise when the mouse button is pressed. The second
definition has delayE(500) inserted into the pipeline; this
causes each event from buttonDown to be delayed for 500
milliseconds before triggering the doE.

2.5 Evaluation scheme
The basic strategy of the evaluation scheme in KScript

can be considered a pull-based implementation of FRP with
all streams being looked at. The evaluation cycle is tied to
the display update cycle; at each cycle, the streams involved
in the system are sorted into their dependency order and
evaluated if necessary. The reason for using a pull-based
implementation is that the platform that KScript employs is
a synchronized display cycle mechanism. It is not inherent
for the semantics of KScript, but it serves well for the design
of the platform.

As described in Section 2.2, a stream holds the names
of its sources. These symbolic references are resolved at
the beginning of each evaluation cycle, and the dependency
information is used to sort the streams topologically into a
linear list. Each stream in the list is then checked to see if
any of its sources has been updated since the last cycle. If
so, the expression for the stream is evaluated immediately
and the value updated, possibly affecting streams later in the
list. Figure 2 shows the evaluation scheme in pseudo-code.
See Section 4.5 for more information.

3. Dealing with Issues in the FRP Model
The original FRP provides very clean semantics and helps
programmers to reason about the program statically. How-
ever, there are two problems we needed to deal with to
achieve our goal of making an interactive environment.

One of the major problems with FRP is that you cannot
have a circular dependency among streams. Unfortunately,
circular dependencies do tend to arise in GUI programming.
For example, imagine that we are creating a text field with
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a scroll bar. When the user types new text into the field,
the visible area of the text may change so the location of
the knob in the scroll bar may have to be changed. At the
same time, however, any change in the knob position (such
as when dragged by the user) should change the visible area
of the text. This is a circular dependency.

Also, imagine if there is support for turtle geometry.
The key concept in turtle geometry is specifying the turtle’s
movement in differential form: for example, the command
rt 2 computes a new value of the heading variable from
its old value. If the program is naively written as
heading <- heading + 2

it would mean that the heading variable depends on itself,
becoming an even more direct form of circular dependency.
For this to mean anything sensible, there needs to be a way
to distinguish the old and new values of a variable.

Another problem is the static nature of FRP. To support
a more exploratory style of programming, we need a more
dynamic language.

3.1 Setting values into streams
We want an inspector on an object to allow the user to
change the object’s values and stream definitions on the fly.
Similarly, it should be possible to change a graphical object’s
position and geometry interactively via the halo mechanism
(see Section 4.8).

To support such actions, a stream supports an operation
called set, which sets a new current value. It is typically
used on value streams (i.e., streams defined without depen-
dency sources). For example, there is a stream that represents
the geometry transformation matrix of a Box (a basic graph-
ics widget). In a pure form of FRP a value stream would truly
stay constant, but by use of set we can allow the value to be
updated in response to direct manipulation and exploratory
actions by a user. This is analogous to the receiverE and
sendEvent mechanism in Flapjax.

When a stream is updated via set, the dependents of the
stream will be updated with the new value. However, the is-
sue that arises is that the topological sorter for streams can-
not detect the dependency when set is used from imperative
code. As a consequence, the order for the dependents to be
updated can vary based on the sorting result. This approach
does give rise to temporarily inconsistent values (“glitches”,
in FRP terminology), but we opted to deal with these in the
cases where they arise.

For the case of a text field with scroll bar, instead of spec-
ifying the positions of the text area and the scroll knob using
mutually dependent streams, we use side-effecting methods
that request value changes using set when necessitated by a
change in the other stream.

3.2 Accessing the previous value
It is convenient to be able to access the previous value of
a stream. In KScript, when the prime mark (’) is attached

to a variable name referencing a stream, it evaluates to the
previous value of the stream. This can be used in computing
a new value. Consider this example:
nat <- 0 fby when timer then nat’ + 1

The stream nat starts with 0, and recomputes its value when-
ever the stream called timer is updated. The new value is the
previous value incremented by 1.

Note the use of when-then. Imagine if a user forgot to
specify the trigger (timer), and wrote:
nat <- 0 fby nat’ + 1

Because a variable with the prime mark is not registered as
a dependency source, this stream would never update. The
when clause is thus a way to specify additional dependen-
cies.

Accessing the previous value also allows mutually depen-
dent streams to be computed simultaneously. For example,
one can define a pair of values that each follows the other:

a <- true fby when timer then b’

b <- false fby when timer then a’

4. KSWorld: the GUI framework
KSWorld is a GUI framework that supports exploratory re-
active programming. The ideas on how to structure graphi-
cal objects are drawn from Morphic [11], Lessphic [12], and
Tweak [13]. The framework maintains a 2.5-dimensional
display scene as a tree whose nodes are graphical objects
called Boxes, and where a parent/child relationship between
nodes signifies containment.

4.1 Boxes
A Box inherits from KSObject and serves as the entity that a
user sees and interacts with. It manages the streams needed
to make it behave as a graphical object. The container

stream represents the container (parent) in the display tree;
contents holds the contained (child) Boxes as a collection;
shape represents the visual appearance; and transformation
is a 2 × 3 transformation matrix relative to its container.
There are also derived streams such as extent, which is the
inherent extent of the Box, and bounds, which is computed
by transforming extent into the container’s coordinate sys-
tem. Since these streams need to have a value all the time
(i.e., from the moment the Box is instantiated), they are de-
fined as behaviors in the FRP sense, with meaningful initial
values.

Taking the idea of a uniform object model seriously, we
made even the individual characters in a text field be separate
Boxes.

4.2 Graphics model
From the STEPS project we use a full-featured vector graph-
ics engine called Gezira [14]. The shape property of a Box

holds an object that packages quadratic Bézier contour def-
initions along with fill and stroke data. We also provide a
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canvas abstraction on top of the core Gezira engine and in
normal operation render all Boxes with Gezira1.

Each of the character Boxes mentioned above holds vec-
tor data for its shape, created from a TrueType glyph.

4.3 User event routing
When the framework receives a user event (such as “but-
tonDown”, “keyUp”, etc.) from an external device, it must
decide which Box should handle the event. If there is a
Box holding the “focus”, the event goes there; otherwise the
framework traverses the display scene depth-first to find the
deepest Box that contains the position of the event and has
a value stream whose name matches the event type. For in-
stance, if a Box is interested in buttonDown, it declares this
using:

buttonDown <- eventStream()

When the framework finds the appropriate recipient, the
event will be set into the recipient’s stream, and any depen-
dent streams will be triggered during the subsequent evalua-
tion phase.

The most of the framework, such as the routing of events,
and the management of the display tree is mostly written in a
procedural rather than reactive style. The reason is that rout-
ing events requires ordering, which is easier to express in a
procedural manner. For example, imagine that there are sev-
eral Boxes in a display scene that have a way of responding
to mouse-over events. A purely reactive description of the
response for each box would be: “when the mouse pointer
is within my bounds, react to it like this”. However, the 2.5-
dimensional structure of the display dictates that when Boxes
overlap only the front-most Box containing the event loca-
tion should react. To orchestrate this choice in purely reac-
tive code would be awkward.

4.4 Event triggering
Once events are delivered to the dataflow model, specifying
the reaction is simple. For example, the following stream
definition makes the Box owning the stream jump to the right
when it receives a mouse-down event:

myMover <- when buttonDown then this.translateBy(P(10, 0))

Actions that involve multiple objects besides the owner
of a stream typically refer to those objects through fields in
the owner. For example, the code below defines a stream that
keeps the top left of the stream-owning Box coincident with
the top left of its container’s first child Box.

otherBox <- streamOf(container.first())

myAligner <- this.topLeft(otherBox.bounds.topLeft())

The stream otherBox is initialized with the Box whose
bounds are to be watched (the container’s first child). The
myAligner stream refers to otherBox and responds when-

1 We also support an OpenGL back-end that uses the same canvas abstrac-
tion and displays Gezira-generated textures.

while true

var currentTime := getMilliseconds()

registerEvents()

var evaluator := Evaluator.new()

window.withAllBoxesDo((box) ->

evaluator.addStreamsFrom(box))

evaluator.sortAndEvaluateAt(

window.mapTime(currentTime))

// layout phase

window.withAllBoxesDo((box) ->

box.layOut())

window.draw()

sleepUntilNextFrame()

Figure 3. The top-level loop of KSWorld in pseudo-code

ever there is a change in that Box’s bounds, or if otherBox
is set to a different Box.

4.5 The top-level loop
Figure 3 illustrates the top-level loop of KSWorld. The
getMilliseconds() function retrieves the physical wall-
clock time. In registerEvents(), each raw event deliv-
ered to the system since the last cycle is routed to an appro-
priate Box. After this, the display tree is traversed to build the
dependency graph that will be triggered by the raw events
and timers (withAllBoxesDo() applies the given function
to all contained boxes). As described below, the graph itself
can change from one display cycle to the next, so on each
cycle we sort the streams (with a simple caching scheme,
described in Section 9.1) and then evaluate them. The argu-
ment to sortAndEvaluateAt() is a number representing
the logical time to be used in evaluating the streams; the
mapTime() method derives this logical time from the phys-
ical time. After the evaluation, the layout for all Boxes is
performed as a separate phase, and the loop then sleeps until
the next cycle. In KSWorld a typical cycle rate is 50 frames
per second.

The KSWorld is hosted in the Morphic framework in the
Squeak Smalltalk environment. A Squeak graphical object
(Morph) holds a bitmap (Form) for allowing Gezira engine
to render onto it. Morphic events delivered to the Morph
are converted to KSObjects that represent events. In other
words, Squeak provides only a minimum of support for the
graphics and events.

4.6 Box layout
One of the important features of a GUI framework is a lay-
out mechanism. It might seem appealing to write a lay-
out as a set of dependency relationships between Boxes’
bounds streams, but since a typical layout specification in-
volves relationships that are multi-directional, the dependen-
cies would tend to become circular.

Therefore we use procedural code for this part of the
framework too. A Box can be given a layout object that is
responsible for setting the locations and sizes of each of its
children. The layout phase of the top-level loop traverses the

7 2013/9/30
VPRI Technical Report TR-2013-002



display tree and triggers these layout objects. The resulting
calculations cause changes in the Boxes’ transformation
and bounds streams; any other streams that depend on these
will get their chance to respond in the next cycle.

Our standard layout objects include a (multi-directional)
constraint-based layout, and layouts for vertical and horizon-
tal lists.

4.7 Special objects in the display scene
There are two Boxes that receive special support from the
framework. One of them is the Window, which represents
the top-level Box in the display scene. Besides being the top
node in the tree, it maintains global system information and
provides the interface to the external environment, such as
receiving user events.

The second special Box is the Hand, which is the abstract
representation of the user’s pointing device. It too behaves
as a normal Box in the display scene, except that it usually
has its position correlated with the location of the pointing-
device cursor.

It is common to access the Window from a Box. To inte-
grate this lookup in the late-binding resolution mechanism,
we add a virtual field called topContainer to each Box.
Each time this field is accessed it looks up the Box’s current
container chain and returns the top-level Box, which is the
Window.

4.8 Halo
For interacting with graphical objects in KSWorld we pro-
vide a halo mechanism [15]. The halo is a highlight around
the selected target Box (seen as the blue frame in Figure 1),
and provides direct-manipulation means for moving, rotat-
ing, resizing and scaling the target without triggering the
target’s own actions. For example, the halo allows a user to
move or resize a button without triggering the button action.
As the halo itself exists within the uniform object model, it is
made up of Boxes and uses dependencies to track changes in
the target, such as for repositioning and resizing itself when
the target’s transformation or bounds values are changed
by running code.

One problem is that this tracking would introduce a cir-
cular dependency if naively implemented, given that when
the user moves the halo the target should follow it, but con-
versely when the target Box is moved by code the halo
should follow the target.

We again get around this circular dependency with the
help of set (see Section 3.1). When the user drags the
halo, the target’s transformation is updated via the set

mechanism. In the opposite direction, when the target Box
is moved by code, the halo moves to its appropriate position
during the layout phase.

5. Building Basic Widgets
5.1 Buttons
The goal of KSWorld is to support not only applications
with pre-made widgets, but also to be able to write such
widgets and customize them. In other words, we would like
to write everything in the same framework. We begin with
a button widget as an example, to see how compactly it can
be written. The button should have a small but useful set of
features, such as being able to configure whether it fires on
press or on release, and providing various forms of graphical
feedback based on its state.

For bootstrapping, the code shown below may be written
in a text editor, but once the system is working the stream
definitions can be given interactively in the Inspector tool
(as shown later).

A button needs to handle and interpret pointer events.
As described in Section 4.3, value streams are created and
bound to the event type names in the Box that is to receive
them2:
buttonDown <- eventStream()

buttonUp <- eventStream()

pointerLeave <- eventStream()

pointerEnter <- eventStream()

motionQuery <- eventStream()

Further streams are defined to represent the button’s state:
pressed <- false fby

mergeE(buttonDown.asBoolean(),

not buttonUp.asBoolean(),

not pointerLeave.asBoolean())

entered <- false fby

mergeE(pointerEnter.asBoolean(),

not pointerLeave.asBoolean())

actsWhen <- streamOf("buttonUp")

selected <- streamof(false)

The function asBoolean() treats null, undefined, and
false as false and everything else as true. Thus an ex-
pression buttonUp.asBoolean() generates a true value
each time the buttonUp stream is updated with a new
event. The mergeE for pressed updates itself whenever
a buttonDown, buttonUp or pointerLeave event is re-
ceived, and returns a boolean value that reflects which
of those events happened most recently: true if it was a
buttonDown, false for either of the other two. So pressed

is true when a buttonDown has been received and has
not yet been followed by a buttonUp or pointerLeave.
The entered state similarly looks at pointerEnter and
pointerLeave.

We can now write the definition of the clicked stream,
which is to become true when the user has released the
mouse over a button Box that was previously in its pressed
state (i.e., filtering out cases where the pointer drifts off the
button before the mouse is released):
clicked <- buttonUp.asBoolean() && pressed’

2 For convenience, a method listen() can be used to create a set of event
streams from a list of the event names.
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Note the use of the prime mark on pressed to indicate
that it is the previous value that is of interest. Note too that
the prime mark means that pressed is not registered as a
dependency source of clicked, which is as we want for
this stream: clicked should only be updated when a new
buttonUp arrives, not whenever pressed changes.

Based on these states and events, we can write a stream
that truly makes a button be a button; namely, the fire

stream, which updates when the button triggers. When does
a button fire? In usual cases, clicking (mouse down and then
up) is the right gesture, but for some interactions we may
want the button to fire as soon as the mouse is pressed. To
support this, a variable called actsWhen is added, and the
fire stream definition looks like this:

fire <- when (if (actsWhen == "buttonUp" && clicked ||

actsWhen == "buttonDown" &&

buttonDown.asBoolean()) == true

true

else

undefined)

then

var ev := if actsWhen == "buttonUp"

buttonUp

else

buttonDown

{item: this, event: ev}

The when part of this definition confirms a valid confluence
of settings and events for the button to trigger, and the then
part makes a new object with item and event fields to
denote which object fired in response to what event.

The code from the definition of pressed through to that
of fire is enough to turn a plain Box into a functioning
button, yet amounts to only about 12 lines (though we have
folded them here to suit the article format).

One of the benefits of this style of description is a clear
separation of concerns. The button’s responsibility is just
to set a new value on its fire stream, so there is no need
for clients to register callbacks. And the specification of
transitions among logical states is separate from that of the
graphical appearance.

So now let’s add the appearance. The stream that repre-
sents the current graphics appearance is called looks, and
each value it takes is a dictionary of fill and borderFill

for the button. The value is computed when the state of the
button changes. There is another stream named changeFill
that calls side-effecting methods fill() and borderFill()
to cause the actual change of appearance in the button Box:

highlightEnabled <- streamOf(true)

looks <- this.defaultLooks() fby

when mergeE(entered, pressed, selected)

then ...

changeFill <- when looks :f then

if f.fill

this.fill(f.fill)

if f.borderFill

this.borderFill(f.borderFill)

5.2 Menus
In KSWorld, a menu is simply a coordinated collection of
buttons. The first part of the method that sets up a Box to
act as a menu is written procedurally, and creates the right
number of buttons based on an argument that lists the menu
items. These buttons are stored in the menu Box’s items

field. Then the second part of the method sets up the streams
to bring the menu to life:

items <- ... // the ordered collection of buttons

fire <- anyE(items, "fire")

Effectively the menu itself behaves like a big button, with its
own fire stream. This stream uses anyE to detect when any
button in the items collection fires, and stores the button’s
fire event (as described earlier) as its own new value. The
item field in that event holds the button itself, which is how
a client of the menu can see which item fired.

6. Building Tools
In this section we show how larger widgets can be made in-
teractively in KSWorld. Having written the code for buttons
and text layout with the help of tools in the hosting environ-
ment, we are now starting to bootstrap the system in itself.

6.1 File list
The first tool we are going to make is the File List, shown in
Figure 4. In a File List there is a list of directories, a list of
files in the selected directory, and a field to show the selected
directory and file. Pressing the Accept button will trigger
some action, while pressing the Cancel button will close the
File List without triggering.

The steps in making a tool in KSWorld are as follows:

• Make a compound widget.
• Edit the properties and styles with the Inspector and the

ShapeEditor, if necessary.
• Write code to specify the layout, if necessary.
• Write code to connect the events and actions. This can be

done either in the Inspector or in the code editor of the
hosting environment.

• Write code to set up the widget with the layout and
actions.

We start from an empty Box. By using the default halo
menu we add new Boxes into it, then use the halo to resize
and roughly place each of them to get a feel for the eventual
layout.

A rudimentary Inspector tool allows us to inspect the
values of an object and execute KScript expressions in the
object’s context. Using the Inspector we give each Box a
name, and set its fill and border style:
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Figure 4. The File List.

Set fills.

At this point we can also use the Inspector to attach certain
behaviors to Boxes to customize them: some are turned into
buttons, some into lists.

The code for the layout of the File List is written in
an external text editor. It is about 25 lines of constraints
specifying the relationships among 8 widgets; it appears in
its entirety in Appendix A.

There is a small piece of code to set up the File List. It
will install the layout, modify the label of the Accept button
as supplied by the client, and set up client-supplied defaults
for the file-name wildcard patterns and the browsing start-
points referred to as shortcuts:

setup := (title, acceptLabel, fileName, patterns,

extent, theShortcuts) ->

acceptButton.textContents(acceptLabel)

this.layout(this.fileListLayout())

patterns <- streamOf(patterns.findTokens(","))

shortcuts <- streamOf(theShortcuts)

this.behavior(fileName)

return this

The third line installs the layout into the Box. As we write
and adjust the code for the layout, we could execute this line
on its own to check the overall appearance of the composite.

The File List also needs a definition of the behavior

method that is called from setup, specifying the actions
that should be performed in response to relevant events such

as choosing (clicking) in the lists. The full listing of the
behavior method is given in Appendix B. One highlight
is this stream definition:
fire <- when

acceptButton.fire

then

{dir: selectedShortcut,

file: nameField.textContents()}

where selectedShortcut is the currently selected short-
cut and nameField is a Box that is showing the currently
selected file name. This definition specifies that when the
acceptButton’s fire stream is updated, the fire stream
of the File List itself will acquire a new value that is an ob-
ject with two fields. The client of the File List sets up its own
stream that watches this fire stream to trigger a response to
the chosen file.

Because of the loose coupling of stream names, the File
List does not need to contain any knowledge of the client;
its sole job is to set a new value into the fire stream. Thus
developing the File List and its various clients can be done
independently.

In total, about 25 lines of layout specification, 40 lines of
stream definitions and 10 lines of setup code was enough to
implement a usable File List.

6.2 A panel for the tool bar
We now demonstrate how we make a panel, also known as a
bubble, containing commands for the Document Editor.

A box-editing bubble, as it appears when no box is
selected.

The first step is to create a Box to be the bubble, and add
an appropriate gradient fill and corners. Then, as seen before,
we can add a number of Boxes to become the bubble’s
buttons, labels and so forth.

In this example we are building a bubble that supports
manipulation of whichever Box within the document the user
has highlighted with the halo. This bubble needs an editable
text field to hold the name of the selected Box. We first
customize a Box to turn it into a one-line text editor:

Customizing a part within the bubble.
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Then we add the following stream to make the text field
update according to the selected Box’s name:
selectionWatcher <-

when

__docEditor__.selectedDocBox :b

then

this.textContents(if b then b.printString() else "")

where the virtual field docEditor always refers to
the Document Editor handler (see Sections 2.4.3 and 7),
so docEditor .selectedDocBox refers to the selected
Box, and the result is converted to a string and shown in this
Box.

The panel contains a number of buttons, making it con-
ceptually similar to the way we defined a menu. As in the
menu, the panel consolidates the fire streams of its chil-
dren into its own fire stream:
fire <- anyE(contents, "fire")

Again, this form of implementation allows largely indepen-
dent development of the panels’ clients, the panels them-
selves, and even of the tool bar. The developer of the client
can make progress without the tool bar being available yet,
knowing that the client code will just need to watch the fire
stream of an object that will be looked up through a named
field. The internal structure of the tool bar is also hidden
from the client, so the developer of the panels is free to ex-
plore alternative organizations of commands.

7. Putting All Together: the Document Editor
In this section we show how a Document Editor resembling
a productivity-suite application can be created out of the
KSWorld Boxes presented up to now. One important obser-
vation is that the editor itself does not have to have much
functionality, because in our design each Box that would be-
come part of a document already embodies features for being
customized not only in terms of appearance but also with ac-
tions and behaviors. A large part of the Document Editor’s
job is simply to provide a convenient user interface to these
features.

The overall design of the Document Editor borrows from
Microsoft Office’s ribbon interface [16]. Each command
bubble, as described above, contains a set of commands that
are closely related. When a Box in the editing area is high-
lighted with the halo, the tool bar will show only bubbles
that are relevant to that Box (or to the document as a whole).
There are too many bubbles for all of them to be seen at
once, so we group them into tabs such that the most fre-
quently used bubbles appear by default, and we let the user
access the rest by selecting other tabs. Managing this tool bar
structure is one of the Document Editor’s responsibilities.

The Document Editor also provides the UI for navigating
to a document and to a page within it, starting from a set of
directory shortcuts and ending with a list of thumbnails for
the document’s pages. We call this interface the directory
browser (see Section 7.4).

Buttons within the Document Editor allow the user to
hide the tool bar and directory browser selectively, for ex-
ample to give priority to the document itself when giving a
presentation. The document can also be zoomed to a range
of viewing scales.

Finally, the Tile Scripting area (see Section 7.5) supports
“presentation builds” for each page of a document, in which
the visibility of individual Boxes on the page can be con-
trolled through a tile-based scripting language.

7.1 The document model
While the basic model of a document is simply homoge-
neous Boxes embedded into each other, we wanted to have
a higher-level structure allowing end-users to organize doc-
ument contents.

From our past experiments, we adopted a HyperCard-like
model of multiple cards (or pages) gathered into a stack.
Conceptually, a KSWorld stack is an ordered collection of
Boxes that each represent one page. Additional properties
control which child Boxes are specific to a single page, and
which are shared among many (e.g., to act as a background
or template).

The model’s combination of uniform object embedding
and pages in a stack covers a variety of document types.
A slide in a presentation maps naturally to a page, while a
lengthy body of text can either appear in a scrolling field on
one page or be split automatically across many.

7.2 The Document Editor handler
The core of the Document Editor is implemented as a “han-
dler” object that is attached to a Box that represents the
Document Editor. The handler can be referenced from other
Boxes via the docEditor virtual field. It is presented as
a field so that the streams for tool bars and other widgets
in the handler can pick up the changes in the streams of the
Document Editor.

In a handler, the associated Box is stored in a field named
whole.

7.3 Bubble selection
The current target of the halo is held in a stream called
haloTarget of the Window Box (described in Section 4.7).
To customize the editor interface depending on the high-
lighted Box, the Document Editor needs a stream that de-
pends on haloTarget. One could start to define the reaction
logic as follows:
bubbleWatcher <-

when

mergeE(__topContainer__.haloTarget,

textSelection, whole.extent)

then

this.checkBubbleVisibility()

where checkBubbleVisibility() decides the set of bub-
bles to be shown, based not only on the halo highlight but
also the existence of a text selection, and the size of the Doc-
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Figure 5. The Directory Browser on the left, and the Script-
ing Pane on the right.

ument Editor as a whole (which determines how many bub-
bles will fit on the tool bar).

However, remember that the Document Editor interface
itself is made up of Boxes, that a user might want to examine
or customize. It would be bad if attempting to put the halo
on a Box within a bubble, for example, caused that bubble
itself to be categorized as irrelevant and removed from the
display. This is a case for filtering the haloTarget stream
by inserting the value undefined to suppress unwanted
responses. We define a stream that checks whether the halo
target is within the document or not:
selectedDocBox <-

when

__topContainer__.haloTarget :box

then

if ((box && this.boxBelongsToDoc(box)) || box == nil)

box

else

undefined

This stream updates itself to undefined when the high-
lighted Box is not part of the document (note that nil is also
a valid value for haloTarget, meaning that no Box is high-
lighted). If the bubbleWatcher uses this filtered stream in
place of haloTarget, it will only respond to halo placement
within the document:
bubbleWatcher <-

when

mergeE(selectedDocBox,

textSelection, whole.extent)

then

this.checkBubbleVisibility()

7.4 Directory browser
On the left side of the Document Editor are three lists sup-
porting navigation among documents and the pages within
a document. From left to right, the lists hold a pre-defined
set of “short cuts” to local or remote directories, a list of

documents in the currently selected directory, and a list of
thumbnails for the pages in the selected document.

These lists can be hidden selectively to open up more
screen space for the document. Taking advantage of the
highly dynamic nature of Box compositions, of which the
Document Editor as a whole is one instance, this hiding and
showing is achieved simply by replacing the layout object
that arranges the sub-components of the interface.

7.5 Tile scripting
In the retractable pane on the right side of the Document
Editor is a simple tile-based scripting system that is designed
to control the “presentation build” of a document page, for
example in which some of the page’s Boxes are hidden to
start with then progressively revealed as the keyboard space
bar is pressed.

Figure 5 shows a page with document Boxes named id1,
id2, etc. When the page is loaded the sequence of tiles will
be executed from the top, so the objects with a hide tile
attached will initially be hidden. The script then waits at the
first line that has a space trigger attached. When the user
hits the space bar, this trigger is satisfied and the tiles down
to the next trigger will be executed.

The scripting area has its own interpreter, which simply
visits the Box structure of the script and installs a keystroke
or button-down event stream on each trigger Box it finds.

As well as allowing such scripts to be edited manually, we
support building them programatically. For example, Frank’s
ODF importer converts the visual effects specifications in an
ODP file into KSWorld scripting tiles.

8. Example Documents
We now show examples of dynamic documents that were
made in the Document Editor (notice also that the first
screenshot in this paper shows a recreation of the paper’s
own title page).

8.1 An active essay on standard deviation
We are especially interested in interactive documents that
capitalize on the computer’s ability to demonstrate abstract
ideas concretely and visually. The first example here is to ex-
plain the concepts of average and standard deviation. Imag-
ine that we are creating an online encyclopedia article: rather
than just having a static page, or some non-interactive ani-
mated GIFs, the article should provide interactive features
that let the reader explore the topic.

Figure 6 shows the essay. The text is a simple explanation
of the two concepts, but what is notable is the interactive
aspect. There are seven sliders representing numbers, that
the user can adjust by moving the slider knobs up and down.
A moving horizontal line represents the current average of
the numbers.

In addition, the bottom half of the text contains numeric
readouts. These are in fact live spreadsheet cells, though lib-
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Figure 6. An Active Essay on Standard Deviation.

erated from the two-dimensional grid of a typical spread-
sheet application. The spreadsheet-like nature of FRP makes
it straightforward to write for each cell a stream that gen-
erates the cell’s value in terms of other values, both for the
cells that follow the number sliders directly and for those that
represent steps in the calculation of the standard deviation.

8.2 An active essay on Fourier series
One of the interesting ways of visualizing the concept of a
Fourier series is through a Phaser, a computerized animation
developed by Danny Hillis based on an idea from Viki Weis-
skopf. The key is that a sine function can be visualized with
a rotating line segment. When it is rotating at a constant rate
around one end, the vertical position of the other end repre-
sents the sine function. Summing a series of sine functions
of different amplitudes and frequencies can be achieved by
visualizing each function as a line segment with appropriate
length and rotation rate, and pinning the start of each line to
the end of the one before. The oscillating vertical position
of the end of the last line represents the moment-to-moment
sum of the series.

Figure 7 shows an editable Phaser setup for use in
explaining Fourier series. It includes a spreadsheet with
columns heading, length and speed. Each row provides
the data for one of five line segments instantiated in this ex-
ample. The heading cells contain formulas that depend on a
value held in the timer1 cell. When the formula for this cell
is set to be a steadily increasing time provided by a stream
timerE(20), the animation starts and the arms show the
visualization of the Fourier series. The line graph is plotting
the vertical position of the tip of the final arm.

Both of these examples were created in the Document Ed-
itor, making use of a set of commands for instantiating cus-
tomized forms of Box. For example, the New Cell command
creates a new (free-floating) spreadsheet cell that can be em-
bedded into a another Box, such as a text field, where it can
be further customized with the help of the Inspector tool.

Figure 7. An Active Essay on The Fourier Series.

9. Complexity and Performance
One of the goals of the STEPS project is to reduce the
accidental complexity of software systems. The number of
lines of code needed to write a system is one way to get a
feel for such complexity.

As demonstrated above, KSWorld is already more than a
single-purpose, minimal GUI framework: it supports direct-
manipulation construction and authoring of new user docu-
ments and applications, and saving and loading documents.

Table 1 shows a breakdown of the lines of code in this
system. The elements that are summarized in the first subto-
tal (10,055) are considered to be the essential part of the sys-
tem for implementing the Document Editor. The next entry,
“Gezira Bindings”, is semi-essential. The remaining parts
are not essential for making the Document Editor, but help
with optimization and development.

Detailed discussion of each of the table items is beyond
the scope of this paper (refer to [17] for more detailed infor-
mation), but here we would like to make a few remarks:

First, note that KSWorld is currently hosted in the Squeak
Smalltalk environment. While most of KSWorld’s features
are written in KScript, some optional or lower-level features
are for the time being written in Smalltalk. The primitive ob-
jects in KScript, such as Numbers, Strings, Arrays, and Dic-
tionaries are mapped to those of Squeak. Note that programs
written in KScript use limited set of the protocols supported
by these classes.

Also note that KScript itself can be considered a hybrid of
two languages: a JavaScript-like basic object-oriented lan-
guage, and a dataflow extension. From our experience, the
number of lines of code required to implement in KScript
a feature that does not make use of dataflow is comparable
to implementing in Smalltalk. Dataflow-based features are
considerably more compact. As one example, a compara-
ble implementation of the FileList explained in Section 6.1
took about 250 lines in Smalltalk, as opposed to 50 lines in
KScript.

Lines of code is a metric of static complexity. But how
about dynamic complexity? When an empty Document Ed-
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LOC Total Description Language
753 KScript Compiler OMeta/Squeak
291 Basic Object Model KScript
654 FRP implementation KScript

2,133 Basic Model of Box KScript
548 Box Support Squeak
962 Text Support for Box KScript
760 Common Handlers for Box KScript
716 Layout Squeak
209 Stack KScript

1,769 Document Editor KScript
1,260 Serialization Squeak

10,055 Sub Total
2,330 2,330 Gezira Bindings Squeak

288 OpenGL Rendering Squeak
95 Spreadsheet Table KScript

492 SVG Importing Squeak
1,140 ODF Importing Squeak
1,110 Development Support Squeak
1,848 Tests Squeak

4,973 Subtotal of above.
17,358 Total

Table 1. The lines of code in the KSWorld and the Docu-
ment Editor.

itor is started, it contains about 530 Boxes, including all the
characters in the labels in buttons, bubbles, and other con-
trols. Each such Box contains 13 to 18 streams, so the de-
pendency sorter must handle about 8,800 streams. Because
each character in a document is also handled as an individual
Box, when there are 4,000 characters in the current page (as
in Figure 1) there are roughly 80,000 streams involved. Most
of these, however, are mundane value streams that represent
the transformation, shape, container, etc. The number
of streams with non-trivial expressions is quite low.

9.1 Performance
Even though our work emphasizes simplicity of the model
over run-time performance, when running on a MacBook
Pro computer with an Intel i7 2.3GHz processor the system
is comfortably responsive (achieving 30 to 50 fps) in com-
mon cases.

Two major tasks consume most of the execution time.
One is the graphics rendering. For simplicity we have so
far omitted damage region management, and the system can
spend 70% of its time rendering Boxes when the display tree
is complex (noting once again that each character Box is
rendered individually).

Another major taks is that of sorting streams topologi-
cally. As long as the set of streams in the system is steady,
the sorted result can be cached, but when a new object or
new stream is introduced the cache is discarded and recon-
structed. If this happens often (such as when editing text
from the keyboard) the system does become sluggish, some-
times achieving as little as 2 fps.

One way to address the latter problem would be to make
characters no longer have their own Boxes, or to use fewer
reactive streams in their implementation. Less draconian
changes, such as finer-grained use of caching, could also
achieve the necessary performance improvements.

10. Related Work
There has long been an interest in time-aware computation,
with a history going back to John McCarthy’s Situation Cal-
culus [18]. Recently, Dedalus [19] provides a clear model
that scales to distributed execution based on Datalog. For
making a GUI framework for a single-node computer, how-
ever, we need a more orderly execution model, as we expect
that what we see on screen is the snapshot of “quiescent”
states at regular intervals. Also, we needed to allow the side-
effecting set operation for streams. This is certainly a great
area for future research.

Lucid provided a nice syntax for describing the concept
of a variable being a stream of values, and provided a clean
formulation of the concept. Lucid lacks the distinction be-
tween continuous values and discrete values; we found this
distinction very useful in thinking about graphical applica-
tions.

FRP can be seen as an equality-based, uni-directional
constraint solver. In the past, there have been attempts to
apply constraints to GUI frameworks. Most notably, Gar-
net [20] provided a similar feature set to KScript and
KSWorld, such as being able to have uni-directional con-
straints, or formulas, in the slots of graphical objects that the
system then satisfies (it also had an equivalent of the set op-
eration). Garnet had an interface builder as well. However, it
did not have a time-aware execution model, and the system
was not designed for exploratory system construction.

On the cleaner semantics front, the Constraint Imperative
Programming language family, such as the versions of the
Kaleidescope language [21], are notable. They used multi-
directional constraint solvers that can handle non-equality,
and the concept of assignment is incorporated in the frame-
work. On the other hand, the cleaner semantics has some
limitations. When the data involved in the framework ranges
over colors, transformation matrices, bounding boxes en-
compassing Bézier curves, etc., we don’t see that a multi-
directional solver would give reasonable results. (A multi-
directional solver could emulate one-way constraints when
necessary; the challenge is finding a good trade-off between
expressiveness and simplicity.)

Animus, by Duisberg and Borning [22], was an early
constraint-based GUI framework with a theory of time.

Another GUI framework that had the idea of being based
on spreadsheet-like uni-directional constraints was Forms/3.
Compared to Forms/3, our system provides higher-level or-
ganization concepts such as embedded graphical objects to
support applications and projects that are much bigger. Also,
more importantly, our system aims to be self-sustained. The
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editors, inspectors, etc. used in the authoring system should
be written on top of the same system.

One direction for further work is to investigate tighter
integration of the FRP concepts of behaviors and events with
multi-way constraints, and with more recent solvers such as
Cassowary [23].

Modern GUI frameworks often have a binding mecha-
nism with a special language or syntax for specifying noti-
fications and describing simple constraints among variables.
Examples of them include the SML language for Qt [24],
JavaFX 1, etc. However, they are mostly designed for mak-
ing form-based applications that do not involve adding or
removing new user objects.

11. Conclusions
We presented a new language called KScript for writing
interactive graphical applications and a universal document
editor written in it.

The FRP-derived model worked well for our goal. We
wanted to describe a highly interactive exploratory applica-
tion building system that is written with a time-aware execu-
tion model in declarative and compact style. With the late-
bound variable lookup scheme, the system can be written as
a set of dataflow graph nodes. The example application, the
Document Editor, is a good validation of the language’s ex-
pressiveness and flexibility to support dynamic changes for
exploratory programming.

While the base model is functional we allow a non-pure
operation to update the value in a stream for facilitating
direct manipulation and breaking circular dependencies. A
consequence of this was glitches in the timing of evaluation.
In the future we would like to have a better formalization in
this regard.

The pull-based implementation strategy was the result of
the characteristics of the underlying implementation system,
where it has a periodic event loop. We also would like to
explore different implementation strategies.
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A. The layout of the FileList
This is the layout of the File List.

layout

^ KSSimpleLayout new

keep: #topLeft of: ’titleBar’ to: 0@0;

keep: #right of: ’titleBar’ to: #right offset: 0;

keep: #height of: ’titleBar’ to: 25;

keep: #topLeft of: ’directoryField’ to: #bottomLeft of: ’titleBar’ offset: 10@5;

keep: #right of: ’directoryField’ to: #right offset: -10;

keep: #height of: ’directoryField’ to: 20;

keep: #topLeft of: ’shortcutListScroller’ to: #bottomLeft of: ’directoryField’ offset: 0@5;

keep: #width of: ’shortcutListScroller’ to: 80;

keep: #bottom of: ’shortcutListScroller’ to: #bottom offset: -35;

keep: #topLeft of: ’fileListScroller’ to: #topRight of: ’shortcutListScroller’ offset: 5@0;

keep: #right of: ’fileListScroller’ to: #right offset: -10;

keep: #bottom of: ’fileListScroller’ to: #bottom offset: -35;

keep: #bottomLeft of: ’nameField’ to: #bottomLeft offset: 10@ -10;

keep: #height of: ’nameField’ to: 20;

keep: #right of: ’nameField’ to: #left of: ’accept’ offset: -5;

keep: #bottomRight of: ’cancel’ to: #bottomRight offset: -10@ -10;

keep: #extent of: ’cancel’ to: 60@20;

keep: #bottomRight of: ’accept’ to: #bottomLeft of: ’cancel’ offset: -5@0;

keep: #extent of: ’accept’ to: 60@20;

yourself
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B. File List Actions
The code to attach expected behavior to the File List.

behavior := (initialFileName) ->

// shortcuts holds the list of default directories.

// We don’t have a way to add or remove them right now.

// So it is computed at the start up time.

shortcutList.setItems(([x.value(), x.key()] for x in shortcuts))

// When an item in shortcutList is selected, selectedShortcut will be updated.

selectedShortcut <- shortcuts.first() fby

when

shortcutList.itemSelected :ev

then

(e in shortcuts when ev.handler.textContents() == e.key())

// The following programatically triggers the list

// selection action for the first item in shortcutList.

shortcutList.first().fireRequest.set(true)

// fileName is a field that contains the selected file name. It uses "startsWith" construct

// so it is a stream with an initial value. When itemSelected happens, the string representation

// of the box (in handler) will become the new value for fileName.

fileName <- when fileList.itemSelected :ev

then ev.handler.textContents()

startsWith initialFileName

// When the current selection in shortcutList is updated,

// the fileList gets the new items based on the entries in the directory.

fileUpdater <- when selectedShortcut :s

then

var dir := s.value()

var entries := ([{directory: dir, entry: entry}, entry.name()]

for entry in dir.entries() when patterns.findFirst((p) ->

p.match(entry.name())) > 0)

entries := entries.sort((a,b) ->

a.first().entry.modificationTime() > b.first().entry.modificationTime())

// update the list in fileList

fileList.setItems(entries)

// nameField gets a new string when fileName is changed.

updateNameField <- when fileName :name

then nameField.textContents(name)

// The contents of the directoryField is connected to shortcut

updateDirectoryField <- directoryField.textContents(selectedShortcut.value().asString())

// fire on this handler and the Box are bound to the fire of the accept button.

fire <- when acceptButton.fire then {dir: selectedShortcut, file: nameField.textContents()}

// Allows the File List to be dragged by the title bar.

label.beDraggerFor(this)
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