
Reviving Smalltalk-78
The First Modern Smalltalk Lives Again

Dan Ingalls
CDG Labs,

San Francisco, CA, USA
dan@cdglabs.org

Bert Freudenberg
CDG Labs,

Potsdam, Germany
bert@cdglabs.org

Ted Kaehler Yoshiki Ohshima
Alan Kay

Viewpoints Research Institute,
Los Angeles, CA, USA

{alan.kay,ted,yoshiki}@vpri.org

Abstract
We report on a revival of Smalltalk-78 in JavaScript that runs
in any web browser. Smalltalk-78 was a port of Smalltalk-76
to the NoteTaker, a portable computer based on the Intel 8086
processor. This same interpreter design and snapshot is the ancestor
of Smalltalk-80 and Squeak systems of today. We describe our
conversion to a completely different object memory with essentially
no visible changes in the language or system, as well as our
support of Smalltalk-78’s linearized contexts that used the 8086
stack directly. We report how the Lively Web development system
facilitated tooling for the project, as well as the integration of the
final result with file access over the Internet. We report several
performance results and describe how the resurrected system and
IDE was actually used to build an entire slide composition and
presentation system used to produce a present-day illustrated talk.

1. Background
Smalltalk-76 was the first modern Smalltalk, combining a compi-
lable keyword message syntax with a compact and efficient byte
code interpreter (Ingalls 1978). From its precursor (Smalltalk-74) it
inherited an object-oriented virtual memory (OOZE) which enabled
it to address over a megabyte of objects with sixteen-bit pointers,
and a library of line-drawing, bitmap manipulation and text display
routines.

At roughly the same time, Intel was developing its 8086 micro-
processor to be introduced in 1978, and the Xerox Smalltalk team
(see acknowledgements) determined to build a portable computer
dubbed “NoteTaker” (Figure 1) around that chip, running Smalltalk
as its operating system and application environment.

The challenge of porting Smalltalk-76 to a microprocessor with
only 256k bytes of memory led to several more innovations that
shaped the future of Smalltalk. The need for efficiency led to an
experimental mapping of Smalltalk contexts directly onto the 8086
stack. The overwhelming task of rewriting all the graphics routines
from ALTO assembly code to 8086 assembly code motivated a
rewrite of all the Smalltalk graphics to use only the single BitBlt
primitive operation. By this time the Xerox team had learned enough
about how to build an effective IDE, so this port was also an excuse
to pare down the system to a fairly lean self-supporting kernel of
100 classes and 2000 methods in an image of 200k bytes.

The NoteTaker Smalltalk, also referred to as Smalltalk-78 (Kras-
ner 1983) is thus a manifestation of the original Smalltalk-76
language and interpreter architecture, together with the hallmark
Smalltalk IDE and the earliest BitBlt-based graphic system. Be-
cause of its freedom from the complex OOZE virtual memory and
the equally complex support for lines, text, and image manipula-

Figure 1. NoteTaker hardware

tion in the original Smalltalk-76 system, we determined to revive
Smalltalk-78 as a living artifact accessible in any browser.

While only a few NoteTakers were ever built, we are fortunate
to have one Smalltalk-78 memory image preserved from that day. It
was created by cloning (parts of) the running Smalltalk-76 system.
Since this represents a fairly lean snapshot of the original Smalltalk-
76 system, we thought it would be a particularly interesting target for
reimplementation. A similar cloning process was used to produce
an image to run on Xerox’s high-performance Dorado machine,
and that in turn was stepwise morphed into the publicly released
Smalltalk-80 system.1

2. Notable features of Smalltalk-78
The constraints on NoteTaker deployment led to a particularly inter-
esting point in the evolution of Smalltalk that can be summarized
by the following relationship to its parent:

Language and bytecode architecture Unchanged from the origi-
nal Smalltalk-76 design (Ingalls 1978).

Dynamic execution model Retains full context semantics, but with
a linear stack matched to 8086.

Object memory Complex OOZE virtual memory replaced by sim-
ple object table model.

1 Remnants of this duality can still be seen in the NoteTaker image: lower-
level code in various places tests whether it is running on the NoteTaker or
Dorado.

Graphics system Large library of assembly code for text, lines, etc.
replaced by BitBlt alone.

Programming environment Includes full rich text editor, com-
piler, paned browser and debugger.

Source code Decompilation used in place of remote source code
file.

System size VM reduced from approx 16k in Smalltalk-76 to 6k
bytes of 8086 code. Entire IDE was 100 classes with 2000
methods, totalling 200k bytes

3. Revival process
To revive Smalltalk-78 and make it usable in a browser, we deter-
mined to leverage the similar SqueakJS project that runs Squeak
Smalltalk using n JavaScript in a browser (Freudenberg 2013). We
would reuse the innovative object model as is, modify the interpreter
and BitBlt for Smalltalk-78 differences, and completely rewrite the
context mechanism to follow Smalltalk-78’s linear stack model. The
SqueakJS browser port was developed in the Lively Web develop-
ment environment2, and we took advantage of this support in our
revival of Smalltalk-78 as well. Figure 2 shows the initial Notetaker
screen.

3.1 The initial snapshot
The Smalltalk-78 snapshot we used was created from a running
Smalltalk-76 system. To fit within the NoteTaker hardware, many
features were removed from that system.

The snapshot came in two files: an object table dump (30,976
Bytes) and an object memory snapshot (172,592 Bytes). These
files were not a direct snapshot, but the result of a conversion
program in a running Smalltalk-76 system. These snapshot files
were added to the Lively interpreter object as literal arrays. The
object table is a sequence of 4-byte entries. Each entry encodes
the data address, along with some other bits including a reference
count. Our implementation ignores the reference count since it uses
a generational garbage collector.

The object data space is a sequence of 2-byte words. One header
word encodes the class oop in the upper 10 bits, and the instance
size in the lower 6 bits (class oops always had the lower 6 bits equal
to zero in OOZE). If the size field is zero, then there is a word before
the class with a 16-bit length. The size field is the object size in
bytes, including the class (and size), so a String of length 1 has size
= 3, and a Point would have size = 6.

The format of classes is (quoting from the system itself . . .)

• title “<String> for identification, printing”
• myinstvars “<String> partnames for compiling, printing”
• instsize “<Integer> for storage management”
• messagedict “<MessageDict> for communication, compiling”
• classvars “<Dictionary/nil> compiler checks here”
• superclass “<Class> for execution of inherited behavior”
• environment “<Vector of SymbolTables> for external refs”

The instsize is an integer (i.e. low bit = 1) with the following
interpretation:

• 0x8000 – fields are oops, else not
• 0x4000 – fields are words, else bytes
• 0x2000 – instances are variable length
• 0x0FFE – instance size in words including class

2 Seehttp://lively-web.org/

Figure 2. The initial NoteTaker screen.3

Thus Point has instsize = 0x8006 (class + 2 pointers) and Float
has instsize = 0x4008 (class + 3 words). Floats on the NoteTaker
use a non-standard format: 15 bits exponent in two’s complement, 1
bit sign, and 32 bits mantissa. These floats are converted to standard
IEEE 754 doubles (1 sign bit, 11 bits biased exponent, 53 bits
mantissa) by bitshifts, resulting in native JavaScript numbers.

We discovered that some objects in the snapshot did not have
the right class set. Specifically, we noticed that e.g. Array new: 5
failed with an inexplicable error. It turned out that the Array class
was supposed to be an instance of VariableLengthClass which imple-
ments new:. But in the snapshot, it was an instance of Class. This
problem did not manifest in the original NoteTaker VM because it
intercepted new: as a primitive without actually looking it up. All
other variable-length classes (String, UniqueString, Vector, Process,
Natural, and CompiledMethod) had the same problem, so this proba-
bly came from a bug in the image cloning process.

3.2 The object model
Our VM mimics the Smalltalk-78 bytecode interpreter as faithfully
as possible, but has an entirely different storage model from the orig-
inal, borrowed from SqueakJS (Freudenberg 2013), which in turn
was inspired by the Potato system, an implementation of the Squeak
VM in Java (Ingalls 2008). Rather than emulating the original object
layout scheme with an object table and a contiguous memory area
for objects, it maps each Smalltalk object to a JavaScript object, and
object references are simply fields of JavaScript objects. Tagged
integers are mapped to JavaScript numbers, with typeof checks in
places where the VM needs to distinguish objects from integers and
floats.

The NoteTaker broke away from OOZE’s object zones that
placed uncomfortable limits on object size. Our VM goes further
still by eliminating the complexities of reference counting. It allows
more and larger objects (32K objects, virtually unlimited in size). It
could easily be extended to allow even more objects (by representing
oops with more than 16 bits in saved snapshots).

Instead of reference counting our VM uses a generational
garbage collector as introduced by SqueakJS. Old objects are held
in a linked list. New objects are not explicitly referenced, enabling
them to be garbage-collected by the host GC of JavaScript. An
object gets tenured when its oop is needed for the first time (typi-
cally for hashing). A full GC sweeping old and new space is rare,
basically only for become operations and when snapshotting. This
makes garbage disposal very efficient, since the vast majority of it
is not handled explicitly but by the host language.

3 The live system is available at http://lively-web.org/users/bert/
Smalltalk-78.html (Freudenberg and Ingalls 2014). The initial snapshot
can be loaded as “original image”.

See http://lively-web.org/
http://lively-web.org/users/bert/Smalltalk-78.html
http://lively-web.org/users/bert/Smalltalk-78.html

FIRST_TEMP: -1,// temps, followed by callee’s stack
SAVED_BP: 0, // rel link to caller’s frame
CALLER_PC: 1, // caller’s supended PC
NUMARGS: 2, // args were stacked right to left
METHOD: 3, // method
MCLASS: 4, // method class (needed for super)
RECEIVER: 5, // top stack item in caller’s frame
LAST_ARG: 6, // stack item in caller’s frame

Figure 3. Context frame layout (relative to BP)

MINSIZE: 0, //
HWM: 1, // not used
TOP: 2, // top of stack rel to end
RESTARTCODE: 3, // code to run for restart
STACK: 4, // bottom of stack ares

Figure 4. Process layout

3.3 Linear stacks
It was enough of a stretch to make a bytecode interpreter for
Smalltalk perform acceptably on any machines available in 1978, but
getting it to run on a 4MHz 8086 microcomputer required the Xerox
team to explore every possible trick to improve speed. Because the
8086 offered special instructions for pushing and popping values
on its stack, and also for switching from one frame of temporary
variables to another, Smalltalk-76’s general Context objects were
recast into a series of overlapping context-like frames in the 8086’s
linear stack.

Figure 3 shows the layout of a Smalltalk-78 stack frame. The
base pointer (BP) pointed to the base of the context frame, and
this location held a link to the caller’s base pointer, followed by
the caller’s supended PC. The remaining locations were similar to
a normal Smalltalk context. Note that the stack grows downward
toward lower addresses: arguments are first pushed, then the receiver,
then the method info. This is followed by the caller’s PC, and a link
to the caller’s BP, after which comes the state of the new context with
temps first followed by the new context’s stack cells. A conscious
aspect of this design is that the layout of the top of the caller’s frame
is the same as the base of of the called frame, and these can simply
be aliased so that no copying of receiver or arguments, nor allocation
of a new context object is required to perform a normal Smalltalk
message send.

The linear stacks themselves were Smalltalk objects of class
Process, and these could be activated alernately to achieve a process
switch. Each process object included a header that stored its current
top of stack location, and it was possible to grow and shrink these
variable-length objects as needed. Figure 4 shows the layout of a
process object with many context frames in it, and Figure 6 shows
an example.

The alert reader will recognize that it is not possible to emulate
the operation of Smalltalk blocks with a linear stack alone. Smalltalk-
78’s RemoteCode objects (shown in Figure 5) provided the necessary
added PC and remote return point needed to support out-of-line
block execution, analogous to the RemoteContexts of Smalltalk-
76. While use of remote code was no faster than in Smalltalk-76,
almost all sends (well over 99 percent) in typical code ran using the
overlapping stack frames.

3.4 BitBlt display
Smalltalk-78’s BitBlt is relatively simple, supporting only black-
and-white bitmaps, a 4x4 halftone pattern, four source rules (src, not
src, halftone in src, halftone), and four combination rules (store, or,

FRAMEOFFSET: 0, // offset of my frame in process
STARTINGPC: 1, // PC to start or restart
PROCESS: 2, // my process
STACKOFFSET: 3, // my saved stack pointer

Figure 5. RemoteCode layout

[1970] savedBP: 8
[1971] callerPC: 139
[1972] numArgs: 0
[1973] method: a CompiledMethod: Window>>eachtime
[1974] mclass: the Window class
[1975] receiver: a BitRectEditor
[1976] temp3/t4: true
[1977] temp2/t3: a BitRectEditor
[1978] temp1/t2: 1
[1979] savedBP: 6
[1980] callerPC: 9
[1981] numArgs: 1
[1982] method: a CompiledMethod: UserView>>run:
[1983] mclass: the UserView class
[1984] receiver: an UserView
[1985] arg0/t1: false
[1986] savedBP: 5
[1987] callerPC: 31
[1988] numArgs: 0
[1989] method: a CompiledMethod: UserView>>run
[1990] mclass: the UserView class
[1991] receiver: an UserView
[1992] savedBP: 5
[1993] callerPC: 103
[1994] numArgs: 0
[1995] method: a CompiledMethod: Process>>run
[1996] mclass: the Process class
[1997] receiver: a Process
[1998] savedBP: 0
[1999] callerPC: 0
[2000] numArgs: 0
[2001] method: a CompiledMethod: Process>>goBaby
[2002] mclass: the Process class
[2003] receiver: a Process

Figure 6. Example stack frames, as shown in the VM debugger.
The method Process�goBaby was used to bootstrap the system, it is
only executed when starting up the original image, but remains the
top stack frame. The receiver slot always overlaps between frames,
and if there were arguments, those too (e.g. at index 1984/1985:
false and self were pushed by UserView�run, then run: was sent)

xor, and). Since each word stores 16 pixels, operations are relatively
fast. For even more performance we use specialized inner loops, for
example for filling, and for copying with the store rule.

To display the bits on the screen we use an HTML canvas. We
create a JavaScript ImageData object, which can be displayed on the
canvas in a single drawing call. It needs 32-bit RGBA data, which
we create pixel-by-pixel from the bits in the display bitmap. Doing
this for the full screen (1024x768 by default) would still be quite
expensive. Instead, we only do it for the rectangle affected by each
BitBlt operation. Moreover, we record these “dirty” rectangles and
merge them if possible, only actually flushing to the canvas when
needed. This has the nice effect of reducing flicker, since not every
individual drawing operation is seen by the user.

Figure 7. The debugger interface. It shows an object inspector in
the upper left, an eval pane below it, the current stack in the upper
right, the bytecodes of the current method in the lower right.

It was somewhat tricky to get the flushing right though: the
original system did not use double-buffering4. We flush whenever
an input primitive is called, because then we can assume that all
intermediate drawing operations are finished. This works very well
in general, but not for animations without user input checks. E.g.
a “flash” operation reverses a portion of the screen twice. If we
flush the screen after that, no change would be visible. So we had
to modify the Smalltalk code by inserting a flush between the two
reversals.

The canvas also shows the 16x16 pixel mouse cursor. We erase it
from its previous position by drawing those pixels from the display
bitmap just as after a BitBlt. Then it is shown at its new position.

3.5 Lively Debugging facilities
Having each Smalltalk object be a JavaScript object makes this
VM convenient to debug using the Lively Web interface. Even
before we had develped a nice VM viewer we could use Lively’s
inspectors and workspaces to interact with the VM. We soon added
a bytecode disassembler and stack display to trace the execution,
and a hierarchical inspector to explore object trees. These facilities
make good use of the reflective nature of Smalltalk: While the
VM normally does not care about instance variable names or the
contents of selectors, we decoded them to make the debug display
more meaningful (Figure 7).

Another helpful feature to get the system going were the decom-
piled sources. From independent work by Helge Horch, we had a
complete set of decompiled source code, one class per file, and we
attached to our debugger a little viewer that automatically jumped
to the source code of a method when it was invoked. Since this used
HTML text we had to map the unusual Smalltalk-78 characters to
Unicode characters as best we could. Interestingly, not all the char-
acters needed exist in Unicode5. We had to use some non-obvious
mappings, like an open triangle for the open colon (Figure 8).

4 Instead, it relied on specially selected “slow” phosphors in the cathode ray
tube to reduce flicker.
5 Perhaps there should be an effort to make them into official Unicode
symbols? APL got its own section with all operators. We would need a white
colon in particular, and perhaps an eyeball, quote, prompt and do-it chars

Figure 8. The sources view

4. Using a 36-year-old Smalltalk
4.1 Speed and Space
As the frequency of bugs dwindled, we were surprised how pleasant
it was to use this old Smalltalk. This was partly a fortuitous result of
the way in which we brought the system back to life. With the web
browser came convenience and large clear bitmap graphics; with
modern processors came more speed than the original native code;
with our new object model most object size restrictions vanished,
along with the need for any attention to reference counts.

Once things were running, there was still much work to be done,
since Smalltalk-78 was never really finished. It was completed
to the point of demonstration on the few NoteTakers that were
actually built, but the machines were difficult to use with their small
screens and marginal performance, and it was not easy to capture
changes and feed them back into new releases. Originally, the Xerox
group wrote a Smalltalk-78 image from a running Smalltalk-76
system and this was then moved to the NoteTaker and tried. After
several iterations, one image worked well enough for demos. While
a number of fixes were made and stored on NoteTaker floppy
disks, those are long gone and they were never folded back into
the snapshot we have.

4.2 Finishing the job
As our reimplementation became usable (more so than the origi-
nal), the entire team began working in it as though they had just
downloaded a completely modern tool. It was gratifying to see the
original design validated in such a way.

We fell almost instinctively into the process of “finishing” this
software. This included such tasks as . . .

• Making a convenient mechanism for saving and distributing
changeSets
• Making an automatic update system for installing newly released

changeSets
• Fixing bugs (there were several)
• Removing unused methods
• Taking advantage of the considerable increase in speed. For

instance finding all senders of a message had been so slow that
it was done by executing a code snippet in a workspace. With
the greater speed, it became natural to present such retrievals as
menu commands

Figure 9. Various tools in the updated Smalltalk-78 system

• Completing the support of the excellent Smalltalk-76 debugger
which had never been made to work completely with Smalltalk-
78’s linearized stack
• Recovering source code from an independently recovered

Smalltalk-76 file

4.3 Recovering the source sode
Source code for a method in the NoteTaker had to be decompiled
from the bytecodes of the method due to limited memory space.
Decompiled code lacks meaningful names for temporary variables
and it is also devoid of comments. Since the Smalltalk-78 snapshot
was mechanically generated from a Smalltalk-76 most methods are
identical to their Smalltalk-76 parents. With plenty of space avilable
in the revived Smalltalk-78, we made an effort to restore full source
code.

We were fortunate to find one file of source code for Smalltalk-
76, although we had no way of knowing how well it matched our
Smalltalk-78 snapshot. The file was simply a concatenation of all the
methods with no indication of what class they came from, and only
separated by arcane markers from a bygone text editor. We managed
to isolate the methods and determine their classes in most cases, and
then read them with an importer that would only accept methods if
they generated the same bytecodes (actually if they produced the

same decompilation) as the corresponding methods in our snapshot.
(See Appendix B for the details.)

An immediate benefit from decoding the sources file was that
we were able to import Kaehler’s BitRectEditor, a tool similar
to MacPaint, but developed in 1975 in an earlier Smalltalk.6 The
BitRectEditor has programmable tools, each composed of a texture
ink, a BitBlt mode, and a nib. When a tool is selected, its components
are shown in the top menu. A tool can be reconfigured by clicking
and new tools can be created on the fly.

4.4 Life in the Cloud
With Smalltalk-78 running in the browser, work within the system
became much more productive, but access to external files for
reading and writing was actually more difficult than before. Here we
were able to take advantage of hosting in the Lively Web to make
access to changes files, snapshots, and image resources actually
easier than before.

6 In the earlier Smalltalks, the whole screen was too large to fit into a single
Smalltalk object. Therefore images were stored as BitRects—objects that
held striped data in 2k-byte chunks (which was optimal for OOZE). The
image painting tool (BitRectEditor) would paint the BitRect’s bits on the
screen, do the editing using BitBlt on the screen only, and scrape the bits
back into stripes in the BitRect when done.

Figure 10. Bitmap importer with dithering UI

Files We reappropriated the existing “port” primitive (which had
been used for file i/o) to implement a simple string-based file
interface. It takes a file name string and a file contents string and
stores them in a JavaScript dictionary. It is also written to the web
browser’s localStorage, which survives reloading of the browser
page and thus provides persistence. A list of files is returned when
passing an empty file name. These (and more) methods are provided
by the user global, the current UserView instance:

1 user fileString: ’temp.txt’ ← ’foo␣bar␣baz’. "create file"
2

3 user fileString: ’temp.txt’ "retrieve file"
4 ⇒ ’foo␣bar␣baz’
5

6 user fileString: ’temp.txt’ ← nil. "delete file"

Files can be imported by drag-and-drop and are then available to
Smalltalk.

Bitmaps A special case is importing bitmap files like JPEGs or
PNGs. The NoteTaker code obviously can not load these files
directly, as the formats had only been invented decades later. It
did, however, define a binary serialization format (asInstance and
fromInstance:) for black-and-white forms. This consists simply of
the instance variables of the Form, a few Integers followed by a
String for the bits. The Integers are stored as 16 bit big-endian
numbers, the String has a one or two byte header encoding the length
followed by the bytes. To support larger forms we extended this to
a four-byte header. When we drop a bitmap into the browser, the
system presents a Lively user interface for reducing the color range
to black and white. It supports both error diffusion (Floyd/Steinberg
algorithm) and ordered dithering. The user can adjust contrast and
brightness, then a form file is generated and stored, which can be
loaded from inside Smalltalk (Figure 10).

Networking The same VM primitive as for accessing local files is
used to store files on the server and retrieve them. If the filename
starts with “http:” then instead of storing it locally, we access it via
a WebDAV server provided by Lively.7 If the filename ends in a
slash, a list of file names in that directory is returned. This enables
seamless working in the cloud or locally.

7 It is amusing to use the term “http” in a system that predates the invention
of HTTP.

Table 1. Interpreter performance, measured on
a laptop with a 2.2 GHz Intel Core i7 CPU

Bytecodes/sec Sends/sec

Chrome 35.0 1,600,000 70,000
Firefox 30.0 6,900,000 110,000
Safari 7.0.4 9,300,000 350,000

Update stream Using the network file access we set up an update
mechanism to distribute changeSets. Each changeSet is a separate
file. There is an index file named “updates.list” containing a list
of all update file names. The image maintains its own number of
loaded updates, so it knows how many new updates need to be
loaded from the list. There are now already hundreds of changeSets
in that stream. Because loading them from the start takes a long time,
we also provide an updated image that is automatically downloaded
when a user starts Smalltalk-78 for the first time.

4.5 Performance
We ported the tinyBenchmarks from Squeak to Smalltalk-78 for
measuring raw bytecode and send speeds. Results are shown in
Table 1. Performance depends considerably on the web browser’s
JavaScript VM. For this particular workload, Safari’s Webkit JIT
compiler outperforms Chrome’s V8 engine by orders of magnitude,
with Firefox in the middle.

In reality we throttle the interpreter when it is idle, as the
interpreter speed is entirely sufficient. Idle detection works by
measuring how often the image calls the input primitives. When it is
rapidly reading the mouse and keyboard without the user providing
input, we let the VM sleep for up to 200 ms, or until a user event
arrives. Thus when the image is busy with some longer operation it
will not check for user input, and thus will not be throttled. As soon
as the user types something or moves the mouse, the VM resumes
at full speed, and keeps going for at least 500 ms before throttling
again.

Note that “full speed” here does not actually mean the interpreter
runs continuously. Unlike a regular Squeak VM which has a main-
loop that is only exited when the application quits, the Smalltalk-78
vm is callback-based, following the design of SqueakJS. That is,
the bytecode interpreter loop runs for a limited time only (typically
20 msecs) and then returns control to the web browser. This is nec-
essary so that the web browser can update the screen, which does
not happen while JavaScript is executing. Similarly, events can only
be processed while no other JavaScript function is active. Once the
interpreter loop finishes, a timer event is scheduled to restart the
interpreter loop. When throttling, the timeout is 200 ms. When not
throttling, it is 0 ms, meaning to call back into the interpreter as
soon as possible.

To get the lowest possible delay between user actions and display
response, we not only run the VM at full speed while user events
arrive. We also break out of the interpret loop early, as soon as
something was drawn to the screen (see section 3.4). Otherwise the
interpreter would continue using its current time slot and only then
return control to the browser. This would delay updating the screen
noticeably, and make the system feel sluggish.

4.6 A real test drive
As an experiment to validate not only the underlying design and de-
velopment system, but also the ability of the system to support an as
yet unanticipated application, we built a fairly capable PowerPoint-
like presentation system (all in 1-bit graphics, of course). Two exam-
ple screenshots appear as Figure 11 and Figure 12. The first of these
is performing the role of a slide sorter, with a clever BitBlt scheme

Figure 11. Presentation slides

to produce shrunken thumbnail images on the fly. The second shows
one of the slides during a full-screen presentation.

While resurrected software systems are often fragile, we were
impressed by the robustness of Smalltalk-78. Our reimplementation
had a completely different object memory and a completely different
Context discipline, but remained extremely stable throughout our
work on “finishing” the system and building this presentation
system.

As an example, besides the normal “builds” required in a
presentation system, we wanted to support multiple concurrent
animations running on the screen while editing and other operations
were being done. This required a rework of the window scheduler
to provide a queue of ticking objects, and for all existing idle loops
to yield to the scheduler in this regard. All of these changes were
made in a couple of hours in the running system with very little
problem. The picture of the ball in Figure 12 is constantly bouncing
(and appearing squashed when it hits the ground) even when other
text is being edited.

As mentioned earlier, some interesting features were stripped out
in the Smalltalk-78 image from the original Smalltalk-76 image.
Most notably, a pen stroke gesture recognizer was missing. To
demonstrate the richness of experiments, we have reimplemented a
stroke gesture recognizer. The implementation is based on a modern
algorithm called $1 recognizer (Wobbrock et al. 2007) rather than

the one that was used in the Smalltalk-76 system. The $1 algorithm
heavily relies on floating point number computation, but by writing
a few primitives to support the algorithm, it works responsively.

5. Things we learned
Small is beautiful. Systems like Smalltalk that are self-describing
are highly leveraged. This made it possible to implement Smalltalk-
78 in only 6k of 8086 assembly code on the NoteTaker. Similarly
we were able to get the system running in a browser with only
roughly 3,000 lines of JavaScript. This number grew to 4,000 as
we added various comforts such as the support for web-based file
access, but the kernel remained small. This same leverage made it a
fun project, as we were able to see “bits on the screen” after only
about 4 man-weeks of work.

Speed is nice. The improved performance of our implementation
over the original made this an exciting project as well. Many
facilities that had been barely usable on the NoteTaker and its parent
Smalltalk-76 system were delightfully responsive, and the system
therefore surprisingly productive.

Clean object API. As with most Smalltalk systems, Smalltalk-78
had a clean interface to storage, and very little work ws needed
to completely change from a reference-counted object table model

Figure 12. Editing a slide: An animation frame is repainted while the animation is playing. This feature is not “built-in”, but was added
on-the-fly by connecting two objects with one line of code. (This figure shows a composite of four successive screenshots)

to a direct pointer garbage-collected model. We were, of course,
fortunate to inherit a relatively complete JavaScript Smalltalk object
model from SqueakJS (Freudenberg 2013).

Browser and Cloud as a universal platform. Finally we learned
through this and the earlier SqueakJS project how to adapt the earlier
file-based Smalltalk systems to take advantage of the conveniences
of browsers and web-based storage facilities. Much of this work was
facilitated by our use of the Lively Web development environment,
although our completed Smalltalk-78 artifact can operate entirely
on its own.

6. Related work
In 2004 Helge Horch got our same Smalltalk-78 snapshot from Dan
Ingalls, along with the original 8086 code listings. From this he
wrote a relatively complete resurrection in Java, that is yet to be
published.

Our Smalltalk-78 VM is based on Bert Freudenberg’s “SqueakJS”
VM (Freudenberg 2013). It shares the overall design, and parts of
the implementation. For example, our BitBlt is a simplification of
SqueakJS’s BitBlt. SqueakJS in turn was inspired by Dan Ingalls’s
“Potato”, a Squeak VM written in Java (Ingalls 2008).

Another Smalltalk that now runs in a web browser is Smalltalk-
72 via Dan Ingalls’s Alto emulator (Ingalls 2013). A major differ-

ence to our approach is that this emulates Alto machine code which
then executes the interpreter, rather than building a new interpreter
running the Smalltalk bytecodes.

There are various attempts to implement different languages
for the web-browser. Among those, Amber8 is notable for being a
Smalltalk dialect implemented in JavaScript. Most of such languages
are implemented as a translator from the language to JavaScript.
The key difference in our approach is that we implement a virtual
machine that is compatible with the actual old one; this allows us to
revive the exact system.

Acknowledgments
The original Smalltalk-78 implementation was done in 1978 mainly
by Dan Ingalls and Ted Kaehler (with BIOS by Bruce Horn) at Xerox
PARC, and never written up except in the introduction of “Smalltalk-
80: Bits of History, Words of Advice” (Krasner 1983, p. 17). A
decade later, “The Early History of Smalltalk” (Kay 1993) gave an
overview of early Smalltalks, including the NoteTaker version.

The NoteTaker hardware was designed and built by Doug Fair-
bairn, with help from the hardware support group at PARC. Engi-
neers at Xerox El Segundo debugged the boards. Some NoteTaker

8 http://amber-lang.net/

http://amber-lang.net/

firmware, schematics, and memos are at http://bitsavers.org/
pdf/xerox/notetaker

The Smalltalk font in the screenshots is Cream by Bob Flegal,
based on a design by Alan Kay.

We are grateful to Al Kossow and Dave McDougall for preserv-
ing a number of Alto diskpacks, of which the NoteTaker Smalltalk
export disk was one. Al and Larry Stewart moved the files to modern
media, and they are now well preserved.

References
B. Freudenberg. SqueakJS, 2013. https://github.com/

bertfreudenberg/SqueakJS.

B. Freudenberg and D. Ingalls. Lively Smalltalk-78, 2014. http://
lively-web.org/users/bert/Smalltalk-78.html.

D. Ingalls. The Smalltalk-76 programming system design and implemen-
tation. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’78, pages 9–16, New
York, NY, USA, 1978. ACM. . URL http://doi.acm.org/10.1145/
512760.512762.

D. Ingalls. JSqueak/Potato, 2008. Original site: http://web.
archive.org/web/20080729033427/http://research.sun.
com/projects/JSqueak/, current home: https://www.hpi.
uni-potsdam.de/hirschfeld/projects/potato/index.html.

D. Ingalls. Lively Alto emulator running Smalltalk-72, 2013. http:
//lively-web.org/users/Dan/ALTO-Smalltalk-72.html.

A. C. Kay. The early history of Smalltalk. In The Second ACM SIGPLAN
Conference on History of Programming Languages, HOPL-II, pages 69–
95, New York, NY, USA, 1993. ACM. ISBN 0-89791-570-4. . URL
http://doi.acm.org/10.1145/154766.155364.

G. Krasner. Smalltalk-80 : bits of history, words of advice. Addison-Wesley
Pub. Co, Reading, Mass, 1983. ISBN 0201116693.

J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries, toolkits
or training: A $1 recognizer for user interface prototypes. In Proceedings
of the ACM Symposium on User Interface Software and Technology (UIST

’07), pages 159–168. ACM, 2007.

A. Smalltalk-78 Syntax
The syntax of Smalltalk-78 is unchanged from Smalltalk-76, which
introduced the regularity of unary, binary, and keyword messages
that is still used in modern Smalltalks. Readers may refer to the
Smalltalk-76 reference for a full description. There are no blocks as
in Smalltalk-80, no booleans, and no meta classes.

The system uses the ASCII-1963 character set (which had ↑ and
← arrows in place of the ^ and _ characters in later ASCII versions).
From the control character range, only Tab (9) and Carriage Return
(13) are used as in ASCII, while some others are used for special
characters not found in ASCII. These include return and implication
arrows (⇑ ⇒), comparison operators (≤ ≥ 6= ≡), indexing
and point creation operators (◦ }), a curved arrow for literal
quoting (used like # in Smalltalk-80), a unary minus (for prefixing
negative numbers, as in 3 − −4), a possessive operator (evaluates
an expression in the context of another object, e.g. obj ’s ’instvar’),
and a few more. See Figure 13 for a complete list. This code snippet
also demonstrates a few idiosyncrasies:

Conditional execution A block of code can be conditionally eval-
uated using the⇒ operator. It maps directly to the “jump if not
false” bytecode (where false is just an instance of Object known
to the VM compared by identity). If the condition is false, the
following block of code is skipped. Any object other than false
causes the conditional jump not to be taken, so the code block is
executed, followed by an unconditional jump to the end of the
surrounding code block. This allows putting an “else” case right
after the conditional block. If execution should resume after the

Figure 13. Non-ASCII characters used in Smalltalk-78

else case, another set of brackets needs to be put around it, as
demonstrated in Figure 13.

Deferred evaluation Brackets are merely a syntactic device to
group statements, they do not create a block object as in
Smalltalk-80. How then does e.g. “for◦◦from:do◦◦” work? The
magic is not in the brackets, but in the two variants of the colon
in a keyword message. The regular colon “:” causes the keyword
argument to be evaluated immediately. For an open colon “◦◦”
however, the compiler generates a “remote copy” of the cur-
rent context. This RemoteCode can be evaluated later, and even
repeatedly if desired.
There are two variants for evaluation, with and without an
argument. The form with an argument (value←) can be used
to assign a value to a variable, the form without an argument
(eval) just evaluates the code. These work together, as there
is no way to pass arguments to a block other than “remotely”
assigning to temporary variables. This is perhaps best explained
with an example. A possible implementation of “for◦◦from:do◦◦”
could look like this:

1 for◦◦ var from: vec do◦◦ code | stream item
2 [
3 stream ← vec asStream.
4 while◦◦ [item ← stream next] do◦◦ [
5 var value ← item.
6 code eval.
7]
8]

Note that “for◦◦from:do◦◦” is not actually a method, but a compiler
macro (as evidenced by the missing receiver). It could, however,
be a regular method as just described.

Assignment selector The last part of a keyword selector can be an
assignment arrow. E.g. “stream next← 5” writes an item to the
stream, whereas “stream next: 5” reads 5 items from the stream.
To the method this is just like any other argument. But on the
sending side, the parser treats the expression after← as if it was
an assignment. That means no parentheses are needed around
that expression. This also works for binary operators extended
by an assignment arrow, making it a ternary operator. E.g.
“a ◦ 1 ← b ◦ 1” uses the ◦ and ◦ ← operators. It is equivalent
to Smalltalk-80’s “a at: 1 put: (b at: 1)” but reads a lot nicer
and needs no parentheses.

No metaclasses The expression “Stream default” looks like it
invokes a “class-side method” if it was Smalltalk-80. But
Smalltalk-78 did not have a metaclass hierarchy in parallel
to the regular class hierarchy. All classes are an instance of Class
so no class-specific methods are possible. Instead, Class provides
a couple of methods that dispatch to a new instance. E.g. the
implementation of Class�default is “⇑ self new default”. In the
Stream case, this invokes Stream�default which initializes the
stream for writing on a new String.

http://bitsavers.org/pdf/xerox/notetaker
http://bitsavers.org/pdf/xerox/notetaker
https://github.com/bertfreudenberg/SqueakJS
https://github.com/bertfreudenberg/SqueakJS
http://lively-web.org/users/bert/Smalltalk-78.html
http://lively-web.org/users/bert/Smalltalk-78.html
http://doi.acm.org/10.1145/512760.512762
http://doi.acm.org/10.1145/512760.512762
http://web.archive.org/web/20080729033427/http://research.sun.com/projects/JSqueak/
http://web.archive.org/web/20080729033427/http://research.sun.com/projects/JSqueak/
http://web.archive.org/web/20080729033427/http://research.sun.com/projects/JSqueak/
https://www.hpi.uni-potsdam.de/hirschfeld/projects/potato/index.html
https://www.hpi.uni-potsdam.de/hirschfeld/projects/potato/index.html
http://lively-web.org/users/Dan/ALTO-Smalltalk-72.html
http://lively-web.org/users/Dan/ALTO-Smalltalk-72.html
http://doi.acm.org/10.1145/154766.155364

B. Source code recovery
The Smalltalk-76 sources file we found was “Smalltalk.Sources.5.5k”
from November 22, 1980. Methods in the file have no class name
associated with them. Instead, every method inside a running ST-76
has an offset pointing the beginning of its text in the sources file.
Unlike a Smalltalk-80 sources file, a method from the Smalltalk-76
file is not ready to be ‘filed in’ to a running Smalltalk. The methods
in Smalltalk-76 sources are grouped by class, but we did not always
know which class it was. It was also hard to tell where one class
ended and another began.

The first thing we did was to build a table of all methods in
the 5.5k sources file in a modern Squeak. The table had an entry
containing the selector, the method source text, and a space for
the class. We could write out any table entry as an expression that
could install that method in Smalltalk-78. Freudenberg arranged that
dropping a file on a web browser running the interpreter placed the
file in a list that Smalltalk-78 could see. From a menu inside the
running Smalltalk-78, we could “file in” that file.

The selective importer let us bring in source code without
changing the bytecodes, but we still worried about two methods
in different classes having wildly differing comments. Methods
named comment were a prime example, but also +, −, /, =, copy,
to:, and printOn:. There were 89 of these ambiguous selectors in
Smalltalk-78. We wrote out every (class, selector) pair and included
a crude hash for its bytecodes. This allowed us to detect same-name
methods where both versions would pass the decompile test.

For the first round, we wrote out all of the methods in Smalltalk-
76 that would be non-ambiguous in Smalltalk-78. We still did not
know which of several implementations of a selector in Smalltalk-76
was the right one. We simply wrote out all of the implementations!
For a given selector, we sent every source version to every class
that had it. We depended on the importer to accept only the correct
version for each class. This worked. We collected the accepted
methods in changeSets and wrote them to files. We sent 1644k of
source, of which 241k was accepted.

Back in Squeak, we parsed the Smalltalk-78 fileouts to discover
what class had claimed each version of a method. We wrote those
class names into the table of Smalltalk-76 methods.

How could we get the right class attached to source code for the
ambiguous selectors? The code for each class was contiguous in
the Smalltalk-76 sources file. We assumed that for every ambiguous
selector, at least one other method in that class was unambiguous. If
we started at an ambiguous method, and looked in both directions
in the Smalltalk-76 table, we would come across a class name in
each direction. If the two classes were different, we simply sent two
copies of the method to the merge test. We sent 20k of sources to
Smalltalk-78 for the ambiguous selectors, and 16k was accepted.

	Background
	Notable features of Smalltalk-78
	Revival process
	The initial snapshot
	The object model
	Linear stacks
	BitBlt display
	Lively Debugging facilities

	Using a 36-year-old Smalltalk
	Speed and Space
	Finishing the job
	Recovering the source sode
	Life in the Cloud
	Performance
	A real test drive

	Things we learned
	Related work
	Smalltalk-78 Syntax
	Source code recovery

