
Real-Time
Stroke-Based
Halftoning
Vanessa Freudenberg
Doctoral Thesis Defense, Magdeburg, 2004-06-04

2

Real-Time

[Valve Software, 1998]

3

Motivation

[Valve Software, 2004]

4

Motivation

[Schuiten and Peeters, 1994]

5

Motivation

Goal: real-time non-photorealistic rendering
- requires hardware acceleration

Problem: hardware designed for photorealism
- PR: pixel-oriented
- NPR: larger primitives

Solution: rededicate hardware
- strokes instead of pixels

Inspiration: halftoning
- borrow means, though not goals

6

Related Work

• Winkenbach &
Salesin (1994)

• Lake et al. (2000)

• Praun et al. (2001)

• Webb et al. (2002)

7

Overview

• emphasis

texture-based
(implicit)

geometry-based
(explicit)

shading

outlines

8

Texture-Based Shading

Goal: use texture mapping for
stroke rendering

Problem: textures are scaled
with distance
- distant lines clash
- want roughly constant

density on screen

Solution:
- use mip-map texture

filtering
- chooses between different

stroke densities

demo: mipmap

10

Texture-Based Shading

Goal: shading by varing
stroke width

Problem: adjust width of
strokes in texture
- texture image is fixed

Solution:
- use halftone screen as texture
- configure texture unit to perform

threshold operation

11

Texture-Based Shading

Problem: screen resolution too low
- aliasing, dot popping

Solution:
- smooth threshold operation

One texture stage only*

inv((inv(col) – tex) << 2)

* outer inv() is input mapping of next stage

demo: rtstroke 1

13

Texture-Based Shading

Goal: render in pen-and-
ink-style

Problem: dynamically
adjust stroke density

Solution:
- construct special halftone screens
- same threshold operation

demo: rtstroke 2

15

Overview

• emphasis

texture-based
(implicit)

geometry-based
(explicit)

shading

outlines

16

Geometry-Based Shading

Goal: draw strokes until desired density is reached

Problem: graphics hardware too inflexible
- can not create primitives
- one vertex at a time

Solution: thresholding
- submit all strokes
- replicate data in vertices
- discard excess strokes

17

18

Overview

• emphasis

texture-based
(implicit)

geometry-based
(explicit)

shading

outlines

19

Texture-Based Outlines

Goal: edge-detection filter on
G-buffers

Problem: number of samples
in filter kernel

Solution: place sample points
between texels
- samples two texels at once
- position determines weight

-1 0 1

-2 0 2

-1 0 1

-1 0 1

-2 0 2

-1 0 1

20

Overview

• emphasis

texture-based
(implicit)

geometry-based
(explicit)

shading

outlines

21

Geometry-Based Outlines

Goal: determine silhouettes on GPU

Problem: access normals of adjacent faces
- only vertex-local data accessible

Solution: replicate data across vertices
- store normals with each edge vertex

22

Geometry-Based Outlines
 void silhouette_test(SilhouetteVertex vertex,

 out float4 position : HPOS,

 out float4 color : COL0)

{

 position = mul(glstate.matrix.mvp, vertex.Position);

 float4 normalA = mul(glstate.matrix.invtrans.modelview[0], vertex.NormalA);

 float4 normalB = mul(glstate.matrix.invtrans.modelview[0], vertex.NormalB);

 float4 view = mul(glstate.matrix.modelview[0], vertex.Midpoint);

 float facingnessA = dot(view, normalA);

 float facingnessB = dot(view, normalB);

 color = facingnessA * facingnessB < 0.0 ?

 float4(0.0, 0.0, 0.0, 1.0) : float4(0.0, 0.0, 0.0, 0.0);

 }

23

Overview

• emphasis

texture-based
(implicit)

geometry-based
(explicit)

shading

outlines

24

Applications

Archaeological Walkthrough
- veracity of virtual reconstruction
- depict uncertainty by non-realistic rendering

style

Game Demo
- adapted from photorealistic style
- very few changes

demo: bfhtdemo

run

26

Conclusion

• practical method for fast non-photorealistic
shading
- as fast as photo-realistic methods
- artist-controlled style

• rededicate hardware for non-photorealism
- build on ideas from halftoning

• wider range of applications for NPR
- interactive illustration
- games

27

From Current to Future Work

• artists tools

• rendering in color

• exact tone
reproduction

• intention-driven
lighting model

• NPR hardware

28

THE END

old / additional
slides

30

Goal: adjust stroke width

Problem: must depend on target width, not distance
- polylines have fixed width
- quads are scaled with distance

Solution: draw quads in screen space
- two vertices per end, same Po, differing Do

Geometry-Based Outlines

31

Strokes

Pen-and-Ink Illustration [Hodges, 1989]

32

Strokes

Wood Cut [M. C. Escher]

33

Real-Time

Halflife [Valve Software, 1998]

34

Real-Time

Halflife 2 [Valve Software, 2004]

Real-Time
Stroke-Based
Halftoning?

36

Real-Time Rendering

37

Real-Time Halftoning?

38

Stroke-Based Rendering

39

Real-Time Stroke-Based Halftoning

40

Real-Time Stroke-Based Halftoning

41

Overview
• Shading with Strokes

• Outline Rendering

• Applications

• Conclusion

42

Overview
• Shading with Strokes

• Outline Rendering

• Applications

• Conclusion

43

Shading with Strokes
• vast number of strokes

• adapt to changing lighting and perspective

• adjust density and width

• maintain frame-to-frame coherence

44

Related Work
• existing techniques for shading with strokes

45

Related Work

Winkenbach & Salesin (1994)

46

Related Work

Winkenbach & Salesin (1994)

47

Related Work

Lake et al. (2000)

48

Related Work

Praun et al. (2001)

49

Related Work

Webb et al. (2002)

50

Related Work
• mostly automatically generated hatching

• slow and expressive vs. fast but restrictive

51

My Work
• explicit stroke generation

- geometry-based
- rendered by vertex program

• implicit stroke generation
- texture-based
- rendered by fragment program

52

Rendering Pipeline

53

Width and Density
• pen-and-ink:

- constant stroke width
- varying stroke density

• wood-cut:
- varying stroke width
- constant stroke density

54

Stroke Width
• relatively simple to adjust

• must be independent of distance

55

Intensity-Based Stroke Width
• halftone screen

- contains multiple widths

• threshold operation
- selects appropriate width

56

Intensity-Based Stroke Width

Intensity

57

Intensity-Based Stroke Width

Halftone Screen

58

Intensity-Based Stroke Width

Result

59

Stroke Density
• maintain density even if perspective changes

• adjust density according to lighting

60

Stroke Density

61

Stroke Density

62

Dual Threshold
• disassociate density control:

- to reflect lighting
- to depict perspective

• separate thresholds

63

Dual Threshold
• intensity

- lighting
- material

• perspective size
- distance
- slope

64

Dual Threshold

65

Explicit Strokes
• geometrically defined strokes

• directly implement dual threshold scheme

• vertex program

66

Creating Stroke Textures
• interactive drawing tool

• adjust for distance and lighting
- creates dual stroke thresholds

• stored as both, vector data and bitmaps

67

Creating Stroke Textures

interactive drawing tool

68

Surface Parametrization
• bitmap textures applied to surface

- conventional modeller (3ds max)
- helps in adjusting texture coordinates

• exported for stroke application

69

Stroke Application
• strokes placed on surface according to texture

coordinates

• clipped to polygon boundaries

70

Stroke Rendering
• vertex program

- calculate lighting and perspective values
- compare to respective thresholds
- possibly discard stroke

71

Discarding Strokes
• discard primitive

- not possible in a vertex progra

• set alpha to zero
- alpha test discards fragments

• make line width zero
- degenerated polygon creates no fragments

72

Explicit Strokes

ca. 80.000 strokes

73

Explicit Strokes
• huge number of strokes

• individually drawn

• flexible, but inefficient

74

Implicit Strokes
• strokes implicitly encoded in halftone screen

• threshold operation in texture stage

• maintain density and width by mipmapping

• well suited for common hardware

75

Constant Density and Width

Series of Mipmaps

76

Stroke Width
• special halftone screen yields varying width

77

Stroke Width

Halftone Screen

78

Stroke Width

Intensity

79

Stroke Width

Halftoned Result

80

Stroke Width

Smooth Threshold Operation

81

Implicit Halftoning
• simple threshold:

- aliasing

• smooth threshold
- not only black/white

82

Implicit Halftoning

83

Implicit Halftoning

84

Implicit Halftoning

85

Smooth Threshold
• simple formula

- tex = halftone screen col = intensity tmp = add(1 − tex, −col) << 2; out = 1 − tmp;

• only two texture stages

• works on virtually any board sold since 1999

86

Stroke Density
• construct halftone screen with increading density

• use same smooth threshold operate

87

Stroke Density

multiple layers

88

Stroke Density

construct halftone screen

89

Stroke Density

90

Visual Effects
• indication mapping

• individual stroke lighting

• warp map

91

Shading with Strokes
• both implicit and explicit techniques

• also in combination

92

Shading with Strokes

93

Overview
• Shading with Strokes

• Outline Rendering

• Applications

• Conclusion

94

Outline Rendering
• determine feature lines

• determine silhouettes
- view-dependent

• draw both

95

Outline Rendering
• explicit silhouettes

- vertex-program

• implicit
- G-Buffer based

96

Explicit Outlines
• store potential silhouette edges

• determine facingness of adjacent faces
- vertex program

• discard line segments
- similar to stroke-based shading

97

Overview
• Shading with Strokes

• Outline Rendering

• Applications

• Conclusion

98

Halftoning

Slide Trash

100

Indication Mapping
• show detail only where necessary

101

Indication Mapping

102

Indication Mapping

103

Indication Mapping

104

Indication Mapping

105

Indication Mapping

106

Indication Mapping

107

Indication Mapping
• indication map stores signed values

- fewer lines if > 0
- more lines if < 0
- unchanged if 0

• bias intensity by indication map

108

Lighting Individual Strokes
• make strokes respond to light

109

Individual Stroke Lighting

110

Individual Stroke Lighting

texture RGB: normal
color RGB: light vector

intensity = dot3(tex.rgb, col.rgb)

111

Individual Stroke Lighting

112

The Warp-Map
• new technique for avoiding partial strokes

113

The Warp-Map

dependent texturing

114

The Warp-Map

Light-Map

115

The Warp-Map

Halftone-Map

116

The Warp-Map

Rendered Image – Partial Strokes

117

The Warp-Map

Warp-Map

118

The Warp-Map

Warped Light-Map

119

The Warp-Map

Rendered Image – Complete Strokes

120

Implicit Outlines
• render G-Buffers

• run edge-detection filter

121

Sobel Filter

6 non-zero samples needed

-1 0 1

-2 0 2

-1 0 1

122

Sobel Filter

only 4 samples needed

-1 0 1

-2 0 2

-1 0 1

123

Denorm Filter
• for Normal-buffers

• averages neighboring normals

• detects de-normalization

124

Denorm Filter

1 sample = average of 4 normals

1 1

1 1

125

1 1

Denorm Filter

linear interpolation causes de-normalization

126

Comparison

Sobel Denorm

127

Comparison

Sobel Denorm

Quality high low

Samples 4 1

128

129

Acknowledgements
• Bernd Eckardt: Geometriebasiertes Echtzeit-

Halbton-Rendering.

• Christian Mantei: Texturbasierte Echtzeit-Cartoons

• Bert Vehmeier: Qualität in Liniendarstellungen
durch lokale Informationen.

• Ragnar Bade, Bernd Eckardt, Niklas Röber, Ingo
Thieme

130

Related Work

Mitchell et al. (2002)

131

Stroke Animation

noise function in fragment shader

132

G-Buffers

depth – normal – material

133

Neighbor Sampling

136

Game
• photorealism adapted to comic style

137

Denorm Filter

138

139

140

Colored Strokes

141

Contrasting Edges

142

Things
• hardware 1999–2004, games in 2004

• Halftoning = thresholds for both, bitmap and vector textures

• Two-valued thresholds (p. 56)

• Explicit vs. implicit

• width vs. density

• Suitability for games

• Artist-controlled

• Tone-reproduction curve (p.83)

• Why inverted halftone screen (p. 88)

• Hard vs. smooth

• indication map p 90

• stroke lighting p 91

• Warp Map

• procedural hatching, noise, animated strokes

• how to discard primitives

• denorm filter

