
EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne
(Guest Editors)

Volume 20(2001), Number 3

Walk-Through Illustrations:
Frame-Coherent Pen-and-Ink Style in a Game Engine

Bert Freudenberg, Maic Masuch, Thomas Strothotte

Institut für Simulation und Graphik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

Abstract
In this paper we show how a game engine designed to generate photorealistic images can be extended to produce
non-photorealistic and hybrid renditions. We introduce new hardware-based methods to accomplish pen-and-ink
illustrations. The combination of the highly optimized processing of a game engine and the use of hardware for
NPR algorithms yields real-time animation of pen-and-ink illustrations.
The particular advance of this method is that it yields the first real-time, frame-coherent pen-and-ink animations
which maintain both tone and texture.

1. Introduction

In recent years 3D game engines have made a tremendous
advance in the graphical presentation of interactive worlds.
A number of optimization and specialization techniques for
the graphics pipeline and the representation of the scene ge-
ometry allow the depiction of a graphically rich world in
varying detail. This development makes 3D game engines
interesting also for non-gaming applications, like for in-
stance virtual reality visualizations. These allow users to be
immersed in another world, as the computer simulates the
complete spatial environment which can be visited with in-
expensive equipment in 3D.

While the main scope of current game graphics still lies
in generating photorealistic images, other fields of appli-
cation favor the use of non-photorealistic images, either
for scientific visualization or for artistic expression. Lately,
computer graphics research has turned to the field of non-
photorealistic rendering and there are a number of solutions
for the generation of still images. If, however, we consider
non-photorealistic animation or even real-time rendering, we
encounter two challenging problems: The first is the main-
tenance of frame-to-frame coherence and the second is the
ability of a 3D engine to render non-photorealistic images of
a given scene in real-time.

We present an approach to non-photorealistic visualiza-
tion of a 3D scene that adopts a 3D game engine. The engine
facilitates a hybrid rendering pipeline that allows specifica-
tion of the rendering style on a per-object basis.

Figure 1: A medieval hall rendered in pen-and-ink style.

The paper is organized as follows: First, we give a
brief overview of the field of non-photorealistic imaging
in computer games, then we discuss the benefits of non-
photorealistic visualizations in combination with a game en-
gine. In Section 3 we describe the architecture and key el-
ements of a non-photorealistic game engine. We introduce
new techniques for real-time pen-and-ink-style rendering.
Section 4 covers the results accompanied by a number of
sample images of various scenes rendered with the 3D en-

c© The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

gine. Finally, in Section 5 we summarize our results and
point out areas of future work.

2. Computer Games and Non-Photorealistic Rendering

Inspecting current computer games, we have to conclude
that no game achieves a truephotorealistic look at all.
Thus, games in general could be callednon-photorealistic
to some degree. However, in a broader sense, the render-
ing style can be calledphotorealisticwith respect to realistic
shapes, spatial relationships and surface details. The devel-
opment of current 3D engines aims at more and more real-
ism, mainly through an extensive use of elaborated textures.
There are only very few computer games that incorporate
non-photorealistic style elements. First, there are games us-
ing a traditional cartoon rendering style as in MONKEY IS-
LAND III or B ROKEN SWORD, but as these are based solely
on 2D data, we do not take them into further account.

The most original looking game PENCIL WHIPPED

adopts hand-drawn texture maps in a conventional 3D game
engine to achieve a sketchy look1. However, it is clearly vis-
ible that the hand drawn textures are simply mapped onto
the scene geometry, more resembling graffiti on a wall than
an animated drawing. TheNPRQUAKE-Project carried out
by GLEICHER et al. pursues a different approach2. They de-
veloped a method to change the appearance of a 3D appli-
cation by intercepting the application’s calls to the graphics
library and replacing them with different drawing primitives
that depict a sketch style, a blue-print and a brush-stroke
style. Their approach uses the core GLQUAKE engine and
maintains the original game-play while achieving a sketchy,
hand-drawn look. The non-photorealistic style elements do
not preserve frame coherence, as the outlines of objects vary
from frame to frame. This results in a lively, but also un-
steady and disturbing experience.

The preservance of frame coherence is one of the most
intriguing challenges of NPR animation. Although there are
an increasing number of non-photorealistic rendering sys-
tems aiming at the generation of various different styles (im-
pressionistic paintings, technical illustrations, pen-and-ink
etc.), there are few systems dealing with the goal of frame-
to-frame coherence. For instance, the system presented by
SALESIN et al. creates pen-and-ink illustrations3, 4, a style
similar to what we are aiming at. It is based onstroke tex-
tures, collections of strokes arranged in different patterns, to
generate texture and tone. However, like other comparable
approaches, stochastic methods are used to model the line
deviations of a hand drawing, which makes them unsuitable
for the generation of animation.

MEIER et al. presented an offline rendering system for
painterly animation. In this system particles are placed on
the 3D model and transformed to strokes in the image5. This
approach and related work suggest that in order to maintain
frame coherence there has to be some sort of connection be-
tween the model in object space and the artistic strokes in

screen-space6, 7. First advances in real-time NPR rendering
were made by MARKOSIAN8, LAKE9 and others. The lat-
ter introduced real-time techniques for cartoon and pencil
sketch rendering. Their system also generates stylized sil-
houette edges, but encounters also another problem of NPR
animation, the “shower-door” effect. This effect describes
the visual discontinuity when particles stick to the screen
and not, as they should, to the object, and the object seems
to move independently from the strokes it is composed of.

A first step in NPR virtual reality was DISNEY’ S

ALADDIN 10, a magic carpet ride through a cartoon-shaded
world, using carefully adapted hand-drawn texture maps.
Recently, a system for the creation of non-photorealistic
walk-throughs in real-time was introduced by KLEIN et al.11.
It is based on image-based rendering methods, using prepro-
cessed images which are captured in advance (from reality
or a 3D model) and processed with a stroke-oriented filter.
These so called “art-maps” are mapped onto the 3D scene
and rendered in real-time.

2.1. Non-Photorealistic Visualization

Non-photorealistic imaging allows the user to simplify an
image by omitting details to control the viewer’s attention in
order to emphasize and deemphasize certain elements of a
depicted scene12. Furthermore, an artistic non-photorealistic
rendition can be more compelling than a synthetic image.
We aim for a visualization style with the qualities of pen-
and-ink illustrations: Silhouettes and creases on the sur-
face should be clearly drawn, while surface detail is added
through hatching. Since only black and white is used for this,
color can be used to present additional information.

Using a hybrid rendering pipeline, we can specify the ren-
dition style for each single object. Thus, we gain an addi-
tional degree of freedom for the visualization.

• photorealistic imagesuse normal photorealistic texture
mapping and shading

• non-photorealistic imagesconsist of a modified shading,
an outline (possibly deviating from the exact shape) and
non-photorealistic textures (i.e. ink-maps or hatch-maps)

• hybrid images combine photorealistic and non-
photorealistic images

Furthermore, by changing the presentation style of an ob-
ject over time, we gain a completely new style of animation.
All these features are integrated in a game engine, as ex-
plained in the next sections.

2.2. Benefits of a Game Engine

The aim of a game engine, in general, is to supply an interac-
tive virtual environment for the interaction of one or several
players with objects and characters of the virtual world. Al-
though there are numerous different game engines, and even
more 3D engines, we can characterize a game engine by its

c© The Eurographics Association and Blackwell Publishers 2001.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

main components (which, of course, may differ from engine
to engine):

• a special purpose3D engine, which is optimized for real-
time rendering and ensures the generation of a constant
frame rate for fluent animation

• a set of rules defining thebehaviorof the virtual world,
like kinematic control, dynamic simulation, collision de-
tection and AI for the behavior of non-player characters

• anetworkcomponent supporting multi-player interactions

As discussed in the beginning of this section, 3D engines
of current computer games focus almost exclusively on real-
istic rendering. If we want to use non-photorealistic visual-
ization elements in a 3D environment, we somehow have to
combine NPR and game engines.

Instead of adding 3D real-time capabilities to a non-
photorealistic renderer, we decided to extend an existing
game engine by adding techniques for frame-coherent non-
photorealistic rendering. Here, we found the FLY 3D-engine
developed by WATT and POLICARPO a flexible open-source
platform to adopt methods for real-time NPR, yet gaining
additional features at low additional costs13.

3. Non-photorealistic elements in a 3D game engine

The development of 3D game engines aims at providing the
player with a highly immersive experience. This involves en-
hancing speed, realism, and image quality. Techniques em-
ployed in 3D engines to achieve speed-up mainly involve
preprocessing as much data as possible and let the graphics
hardware handle much of the per-frame load. For example,
binary space partitioningtrees are used to rapidly cull geom-
etry outside the view frustum,potentially visible setsreduce
the number of polygons drawn for each viewpoint, and pre-
calculatedlightmapscapture the static lighting in the scene.
To improve realism,texture mappingis used for providing
detail and to make realistic surfaces. Not only the surface
color is modified, but alsoenvironment mappingandbump
mapping is becoming common. To reduce the number of
rendering passes required for adding all those layers of re-
alism,multi-texturingand flexible blending is supported by
the graphics hardware, as well as special texture coordinate
generation modes suited for environment mapping orper-
pixel lighting. The hardware also supportsmip-mappingand
full scene anti-aliasingto enhance image quality.

Non-photorealistic rendering, however, presents quite a
challenge to a game engine designer. The most notable dif-
ference to photorealism is that non-photorealism explicitly
uses image-space elements. That is, the pixels generated
on the screen are not necessarily a strict projection of the
3D scene objects. The only method commonly provided
by graphics hardware and low-level graphics libraries like
OpenGL is line drawing. A triangle outline rendered as poly-
line has a constant width independent of the actual distance
of the triangle to the viewer.

For hybrid illustrations, we want both, photorealistic ren-
dering and non-photorealistic drawing styles. How to do the
photorealistic part in a game engine is well understood. The
interesting question is how to make use of the existing graph-
ics hardware features to achieve a non-photorealistic look.
We describe the features of our engine in the following sub-
sections.

3.1. Outlining

Lines are the central element of pen-and-ink-style illustra-
tions.Silhouettesare drawn to enhance the visual separation
of objects from each other and from the background. Addi-
tional lines are used to markdiscontinuitiesof the surface
depicting the inner structure of an object.

3.1.1. Discontinuities

Finding discontinuities on the model’s surface can be done in
a preprocessing step. Usually, the angle between two neigh-
boring faces is compared to a fixed threshold to determine if
the shared edge represents discontinuity or if it is just an ar-
tifact of the polygonal approximation process. This works
well for highly tessellated models. But in a low polygon
count environment typical for games it is preferable to ex-
plicitly define “artistic” edges in the modeling stage that are
always drawn14.

3.1.2. Silhouettes

Silhouettes are view-dependent and therefore silhouette
edges need to be determined in every frame. For our in-
tended illustration style we do not need to distinguish be-
tween discontinuities and silhouettes, so we can safely apply
an optimization: We only need to consider strictly convex,
smooth edges. Non-smooth edges are drawn anyway, and
smooth edges in concavities cannot be silhouettes. This can
significantly reduce the number of edge candidates. For ex-
ample, in the eight-sided prism used to approximate a cylin-
der shown in Figure 2, there are 42 edges, but only 8 smooth
edges are silhouette candidates when applying the “smooth-
and-convex” rule. If an object only contains sharp and non-
convex edges, no silhouette detection needs to be performed
at runtime at all.

Convexity of an edge is determined in a preprocessing
step. For each edge, the unshared vertex of one adjacent

Figure 2: Silhouette determination: all edges (left), smooth
non-convex edges are never drawn (second), sharp edges are
always drawn (third), smooth convex edges are silhouette
candidates (fourth), result with hidden lines removed (right).

c© The Eurographics Association and Blackwell Publishers 2001.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

triangle is checked if it lies in front of the plane of the other
triangle. In Figure 3 this is demonstrated with the shared
edgeAC of the trianglesABC andACD. To determine ifD
is in front ofABC’s plane we can take the dot product of the

ABC’s normalNABC and the vector
−→
AD:

AC is strictly convex⇐⇒ (D−A) ·NABC < 0

In practice, we compare to a smallε instead of 0 to ensure
that co-planar triangles do not become silhouette candidates.

A

D

C

B

Figure 3: Determining convexity of an edge

3.1.3. Drawing edges

In each frame, when the edges to draw were selected as de-
scribed above, they are rendered as wide line segments using
GL_LINES. This takes advantage of the graphics hardware
depth buffer for hidden line removal. To keep lines from
being overdrawn by adjacent faces,glPolygonOffset
is used. The gaps between adjacent edges are filled using
GL_POINTSplaced at the end of each segment.

3.2. Surface detail and Hatching

Surface detail in traditional pen-and-ink illustrations is
added by drawing more complex structures between the out-
lines (for example, bricks in a wall). Surface curvature can
be indicated by hatching, which produces a set of aligned
strokes. Both methods have in common that the line width is
roughly constant over the image plane, it does not diminish
with distance.

3.2.1. Hatch maps

Surface detail in 3D computer games is added via texture
mapping. Structures painted into a texture are intended to
become smaller with increasing distance. In the case of a
pen-and-ink hatching texture, the small structures cause se-
rious moirée patterns. In motion, this produces even worse
visual artifacts than in a still image, which prevents frame-
coherence.

Figure 4 shows a single tilted rectangle covered with a re-
peated black-and-white pattern choosing the nearest texel’s
color for each pixel. The texture scale is adjusted so that in
the front, the texture is drawn at its original size, while in the
back, it is minified due to perspective foreshortening.

The usual antidote for such problems is mip-mapping15.

Figure 4: Unfiltered hatching textures cause moirée pat-
terns.

Mip-maps consist of a series of textures decreasing in size.
The graphics hardware automatically chooses a mip-map
level so no texture minification occurs, on a per-pixel basis.
The mip-map levels are constructed by scaling the original
texture down in a preprocessing step, applying more or less
sophisticated filtering techniques. Unfortunately, the normal
filtering process applied to the large white areas and rela-
tively thin black lines of a hatching texture causes the lines
to vanish into gray soon (Figure 5). All visible surface struc-
ture is lost.

Figure 5: Normal mip-map filtering fades hatch lines into
light gray.

So, at a first glance, textures seem to be unsuited for im-
plementing pen-and-ink detail. But fortunately, the graphics
hardware allows us to set each mip-map level independently.
It does not care whether the individual mip-map levels re-
ally are “nicely” filtered-down versions of the original im-
age. We would need to construct the mip-map levels in a way
that maintains the desired gray-level by spatially distributing
black ink on the white background instead of locally raising
the gray-level of the texels.

This is indeed possible. The key idea is that mip-mapping
essentially displays textures at constant size in screen-space.
That means, a one-texel-wide line drawn into each mip-map
level will be displayed roughly as a one-pixel-wide line on
the screen, independently of the actual object size.

Figure 6 demonstrates the process of constructing one-
dimensionalhatch-map levels that are used as hatching
primitive. On the left, the normal mip-map filtering scheme
is demonstrated. As can be seen, the lines are black and well-
separated in the top level, but they become lighter and closer
to each other in the lower levels. On the right, the hatch-map
construction scheme is shown. It uses equally-spaced black
hatch lines for all mip-map levels. Only in the very lowest
levels that are smaller than the desired on-screen line spac-
ing, gray values are used to maintain the tone.

c© The Eurographics Association and Blackwell Publishers 2001.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

Figure 6: Normal mip-map (left), hatch-map (right).

Texture coordinates for game objects are usually assigned
interactively in a modeling tool. Hatch-map coordinates are
in no way different, except that only one coordinate actu-
ally gets used. An object needs to be entirely covered by a
repeating texture for hatching. In practice, we use a checker-
board pattern in the modeling program, while at run-time it
is substituted by the hatch-map.

For hatch-maps to work, the texture must be scaled so that
it is always minified, because the mip-mapping hardware
only allows to specify minification textures. On the other
hand, to cover a wide depth range, we need many mip-map
levels. We adjust the texture scale for an object while mod-
eling, so that the texture appears at original size when the
object is at its closest distance to the viewer. The result of
applying the constructed hatch-map is shown in Figure 7.

Figure 7: Hatch-maps in bi-linear texture filtering mode.
Four hatch-map levels can be distinguished.

It can be seen that our hatch-map approach works as ex-
pected. Less lines are used in the distance, each line is clearly
distinguishable. However, though the over-all tone is main-
tained, it is not continuous. There is an abrupt switch of
hatch-map levels, causing discontinuities in line-width and
hatching density.

To overcome this limitations we use tri-linear texture fil-
tering. This is a special texture hardware mode that smoothly
blends texels from two adjacent hatch-map levels. Since
hatch-map levels are constructed such that lines in one level,
when displayed, are spaced exactly twice as wide as in the
previous level, the lines fit exactly in-between. This creates
the highly desirable effect of smoothly thinning-out hatch
lines while maintaining the overall brightness of the image
(Figure 8). This is the key for the frame-coherence inherent
to our approach.

To give an example, assuming the desired hatch line spac-
ing on screen is 8 pixels, the lower 3 mip-map levels of
widths 1, 2, and 4 can not be used. Therefore, a 2048×1 tex-
ture gives an usable depth range of 1 : 211−3 = 1 : 256. The
texture could be even larger than that, because, fortunately,

Figure 8: Hatch-maps in tri-linear texture filtering mode.
Strokes are faded out smoothly.

one-dimensional textures do not use much texture memory.
Also, to extend the depth range, the texture scale could be
dynamically varied depending on the object’s distance to the
viewer.

In the case of a very steep viewing angle, anisotropic
texture filtering (enabled via the texture_filter_anisotropic
OpenGL extension) noticeably improves the image qual-
ity. Another factor for better image quality is enabling full
scene anti-aliasing. This increases the virtual screen resolu-
tion, which causes the wrong mip-map level to be chosen.
We compensate this by biasing the level computation using
the texture_lod_bias OpenGL extension.

3.2.2. Ink maps

While maintaining a constant stroke width and spacing for
hatching is a rather mechanical process, adding details to
surfaces is artistically challenging. We looked into construct-
ing ink-mapsthat utilize the same hardware-mip-mapping
technique like the one-dimensional hatch-maps, but this time
in two dimensions.

The desired surface structure was hand-drawn into a tex-
ture map. When we put an object textured with it in our il-
lustration engine, similar problems to the hatch-map prob-
lems mentioned above arose. The moirée effect was not quite
as disturbing because of the larger structure size, but again,
worse in motion. Of course, the drawing rapidly blended into
the white background when mip-mapping was applied.

Automatically adjusting the line spacing as we did for
the hatch-maps was impossible, because the lines were not
evenly spaced. We settled for maintaining the stroke width
only, without considering the change in tone. Unfortunately,
our initial attempts at automatic filtering gave unsatisfying
results (see Figure 9).

Figure 9: Ink-map levels automatically constructed by min-
imum filtering.

c© The Eurographics Association and Blackwell Publishers 2001.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

We used a filter that selects the darkest texel out of the four
parent texels. While the stroke width was indeed roughly
maintained, the lines became fuzzy. Although more sophis-
ticated filtering methods might provide better results, we did
not investigate this further.

Figure 10: Ink-map example.

Instead, we chose to manually construct ink-maps. This
also allows an artist more expressiveness than any automatic
method can provide, because the artist can control exactly
how an ink-map should look like in the distance. The ink-
map was drawn again, this time in a vector graphics appli-
cation. Down-scaling the drawing by 50% maintained the
line width. In the lower scale levels, lines were gradually re-
moved until no lines remained. An example of an ink-map
constructed like this is shown in Figure 10, while Figures 11
and 12 show renderings of a rectangle with the ink-map ap-
plied.

Figure 11: Rendered levels in a manually constructed ink-
map.

Figure 12: Tri-linear filtered ink-map. Note how the tone is
preserved.

With carefully crafted ink-maps, a smooth animation can
be achieved. Frame-coherence is maintained by using tri-
linear filtering which blends different ink-map levels into
each other. First acceptance tests indicated that the gradual

appearance of detail as the viewer approaches an object is a
valuable feature of our illustration style.

3.3. Coloring

The non-photorealistic image elements presented so far (out-
lining and hatch-maps/ink-maps) did not make use of color.
This opens up the possibility to use color as free presentation
variable. An example is to lighten the color from the ground
upwards to indicate rising uncertainty, like the middle col-
umn in Figure 13.

Figure 13: Different rendering styles can be mixed in a
scene.

What is missing in the plain pen-and-ink style renderings
is some sort of shading, which is needed to convey a stronger
sense of form. Assigning textures with different degrees of
darkness9 is an approach that we discarded because of im-
age quality considerations. We rather employed the conven-
tional lighting techniques provided by the game engine to
add shading by blending with the texture (Figure 14).

Figure 14: Shading in combination with hatching conveys a
strong sense of form.

c© The Eurographics Association and Blackwell Publishers 2001.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

Figure 15: Conventional mip-mapping (left part) and ink-maps (right). The advantage of our method can be seen at the roofs.

4. Application and results

The game engine for illustrative walk-throughs is part of
a research project to visualize the virtual reconstruction of
a medieval palace. In contrast to theVRND project, which
visualizes the still existing cathedral of Notre-Dame using
the UNREAL-engine16, our medieval palace no longer exists.
This poses the serious problem that viewers cannot distin-
guish between what is scientifically proven and what has
simply been made up to fill in gaps in the image17. Therefore,
our visualization encodes the level of certainty by the style
of presentation: A photorealistic style indicates actual ex-
cavated artifacts, an illustrative style points out uncertainty
about the reconstruction. Figures 1 and 15 show frames from
exemplary visualizations of the medieval palace and its sur-
roundings.

The 3D engine runs with a 750 MHz CPU and a
GeForce2 Ultra graphics card. Even with unoptimized mod-
els (10,000–20,000 polygons) we always run at interactive
frame-rates, i.e. at least 25 fps. The FLY 3D engine offers a
flexible plug-in API, so all extensions were implemented in
C++, like the engine itself.

5. Conclusions

In this paper we have presented a method to extend and re-
use a game engine for visualization and presentation pur-
poses. In particular, we show how to extend a game engine
to produce non-photorealistic renditions.

The main problem encountered when programming for
NPR is that graphical elements are often drawn in screen
space rather than being simple projections of artifacts in ob-
ject space. Indeed, graphics hardware is tuned to calculate
such projections from object space; it is initially unclear how
to handle, at the same time, adding objects in screen space
making use of the same hardware operations. We solve this
problem for the case of textures while showing how to main-
tain frame-to-frame coherence necessary for animation, con-
centrating on techniques for pen-and-ink-like renditions us-
ing hatch-maps and ink-maps. Hybrid renderings combine
photorealistic and non-photorealistic picture elements into
new forms of visualization.

Our illustration engine is still work in progress and opens
up a number of areas for future work: A most promising ex-
tension would be to represent the actual shading of an object
through hatching as it is carried out in artistic pen-and-ink
illustrations. This would vastly enhance the aesthetic qual-
ity of the visual appearance. The preservation of the appear-
ance of objects very far away from the viewpoint could be
improved, as in these situations the lines tend to get darker
than desired. Here, advanced level-of-detail schemes should
be employed. Finally, we would like to implement more non-
photorealistic styles and enhance the ability of the engine to
change and blend these styles interactively.

c© The Eurographics Association and Blackwell Publishers 2001.



Bert Freudenberg, Maic Masuch, Thomas Strothotte / Walk-Through Illustrations

Acknowledgments

The authors wish to thank Niklas Röber for his work on
the FLY 3D engine and Thomas Fuchs for modeling. Many
thanks to Nick Halper for proof reading the manuscript. We
also wish to gratefully acknowledge the excellent cooper-
ation with the Magdeburg Museum of Cultural History, in
particular Sebastian Kreiker, who spent many hours with the
authors discussing the impact of uncertainty and modeling
decisions in the visualization of ancient architecture.

References

1. L. Flickinger. Pencil Whipped, February 2001.
http://www.chiselhead.com/ .

2. A. Mohr and M. Gleicher. Non-invasive, interactive,
stylized rendering. InProceedings of the ACM Sympo-
sium on Interactive 3D Graphics, 2001. to appear.

3. M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H.
Salesin. Interactive Pen-and-Ink-Illustration. InPro-
ceedings of SIGGRAPH 94, pages 101–108, 1994.

4. G. Winkenbach and D. H. Salesin. Computer-
generated pen-and-ink illustration.Proceedings of SIG-
GRAPH 94, pages 91–100, 1994.

5. B. J. Meier. Painterly rendering for animation.Pro-
ceedings of SIGGRAPH 96, pages 477–484, 1996.

6. M. Masuch, L. Schumann, and S. Schlechtweg. Ren-
dering Frame-to-Frame-Coherent Linedrawings for Il-
lustrative Purposes. InSimulation und Visualisierung
98, pages 101–112, 1997.

7. C. J. Curtis. Loose and Sketchy Animation. InSIG-
GRAPH 98 Visual Proceedings, page 317, 1998.

8. L. Markosian, M. A. Kowalski, S. J. Trychin, L. D.
Bourdev, D. Goldstein, and J. F. Hughes. Real-
time nonphotorealistic rendering.Proceedings of SIG-
GRAPH 97, pages 415–420, 1997.

9. A. Lake, C. Marshall, M. Harris, and M. Blackstein.
Stylized rendering techniques for scalable real-time 3d
animation. Proceedings NPAR 2000: First Interna-
tional Symposium on Non Photorealistic Animation and
Rendering, pages 13–20, 2000.

10. R. Pausch, J. Snoddy, E. Hazeltine, R. Taylor, and
S. Watson. Disney’s Aladdin: First steps toward story-
telling in virtual reality.Proceedings of SIGGRAPH 96,
pages 193–204, 1996.

11. A. W. Klein, W. Li, M. Kazhdan, W. T. Cor-
rêa, A. Finkelstein, and T. A. Funkhouser. Non-
Photorealistic Virtual Environments. InProceedings of
SIGGRAPH 2000, pages 477–484, 2000.

12. T. Strothotte et al.Computational Visualization. Graph-
ics, Abstraction and Interactivity. Springer Verlag,
1998.

13. A. Watt and F. Policarpo.3D Games: Real-time Ren-
dering and Software Technology. Addison Wesley,
2001.

14. J. W. Buchanan and M. C. Sousa. The edge buffer:
A data structure for easy silhouette rendering.NPAR
2000: First International Symposium on Non Photore-
alistic Animation and Rendering, pages 39–42, 2000.

15. L. Williams. Pyramidal parametrics.Proceedings of
SIGGRAPH 83, pages 1–11, 1983.

16. VRND: A Real-Time Virtual Recon-
struction of the Notre Dame Cathedral.
http://www.vrndproject.com/ , February
2001.

17. M. Masuch, B. Freudenberg, B. Ludowici, S. Kreiker,
and T. Strothotte. Virtual reconstruction of medieval ar-
chitecture. InProceedings of EUROGRAPHICS Short
Paper, pages 87–90, 1999.

c© The Eurographics Association and Blackwell Publishers 2001.


